1
|
Chowdhury G, Hoshiko Y, Okuno M, Kitahara K, Albert MJ, Miyoshi SI, Ogura Y, Dutta S, Ramamurthy T, Mukhopadhyay AK. Whole-genome-based characterization of Escherichia albertii strains isolated from paediatric diarrhoeal cases in Kolkata, India. Microb Genom 2025; 11:001363. [PMID: 40198110 PMCID: PMC11979293 DOI: 10.1099/mgen.0.001363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/17/2025] [Indexed: 04/10/2025] Open
Abstract
Escherichia albertii is a Gram-negative facultative anaerobic bacterium that causes diarrhoea in humans. This study shows the isolation of E. albertii from hospitalized paediatric diarrhoeal cases and genome-based characteristics with putative virulence factors and antimicrobial resistance. E. albertii isolates were identified by species-specific PCR, targeting the gene encoding cytolethal distending toxin (Ea-cdt). The genome of E. albertii was sequenced to identify (i) genes encoding virulence factors (ii) antibiotic resistance-encoding genes, including the mobile genetic elements and (iii) core gene-based phylogenetic relationships and pan-genome features. A total of 10 (1.2%) E. albertii isolates were isolated from 854 faecal samples, of which 6 (60%) were found as the sole pathogen and the remaining 4 (40%) were identified along with other pathogens, such as enteroaggregative Escherichia coli, rotavirus and adenovirus. Patients from whom E. albertii was isolated presented cholera-like diarrhoea, i.e. with watery stool (60%) with moderate dehydration (100%), fever (20%) and abdominal pain (20%). The antimicrobial susceptibility testing of E. albertii showed that most of the isolates were susceptible or reduced susceptible to most of the antibiotics except resistance to erythromycin (80%), tetracycline (50%), nalidixic acid (40%), ampicillin (40%), doxycycline (30%) and ceftriaxone (20%). In the whole-genome sequence, E. albertii isolates revealed several virulence-encoding genes, namely the intimin (eae, E. coli attaching and effacing), the cytolethal distending toxin type II subunit A (cdt-IIA), adhesion (paa, porcine attaching- and effacing-associated), non-LEE (locus of enterocyte effacement) encoded effector A (nleA) and antimicrobial resistance genes (ARGs) conferring resistance to tetracycline (tetA, tetR), sulphonamides (sul2), fluoroquinolones (qnrS) and beta-lactamases (bla CTX-M, blaTEM). The SNP-based phylogenetic analysis of 647 whole genomes of E. albertii isolates from the National Center for Biotechnology Information databases did not reveal any comparable clustering pattern based on the biological source and place of isolation. The genome of some of the E. albertii was closely related to those of the isolates from China and the United Kingdom. The PFGE patterns revealed that most of the E. albertii isolates were distinct clones. This study reports on the extensive genome analysis of diarrhoea-associated E. albertii harbouring multiple virulence and ARGs.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Yuki Hoshiko
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, Fukuoka, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, Fukuoka, Japan
| | - Kei Kitahara
- Collaborative Research Centre of Okayama University for Infectious Diseases, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - M John Albert
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Shin-ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, Fukuoka, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
2
|
Arai S, Hirose S, Yanagimoto K, Kojima Y, Yamaya S, Yamanaka T, Matsunaga N, Kobayashi A, Takahashi N, Konno T, Tokoi Y, Sakakida N, Konishi N, Hara-Kudo Y. An interlaboratory study on the detection method for Escherichia albertii in food using real time PCR assay and selective agars. Int J Food Microbiol 2024; 414:110616. [PMID: 38325257 DOI: 10.1016/j.ijfoodmicro.2024.110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Escherichia albertii is an emerging enteropathogen. Although E. albertii-specific detection and isolation methods have been developed, their efficiency on food samples have not yet been systematically studied. To establish a series of effective methods for detecting E. albertii in food, an interlaboratory study was conducted in 11 laboratories using enrichment with modified E. coli broth supplemented with cefixime and tellurite (CT-mEC), real-time PCR assay, and plating on four kinds of selective agars. This study focused on the detection efficiency of an E. albertii-specific real-time PCR assay (EA-rtPCR) and plating on deoxycholate hydrogen sulfide lactose agar (DHL), MacConkey agar (MAC), DHL supplemented with rhamnose and xylose (RX-DHL), and MAC supplemented with rhamnose and xylose (RX-MAC). Chicken and bean sprout samples were inoculated with E. albertii either at 17.7 CFU/25 g (low inoculation level) or 88.5 CFU/25 g (high inoculation level), and uninoculated samples were used as controls. The sensitivity of EA-rtPCR was 1.000 for chicken and bean sprout samples inoculated with E. albertii at low and high inoculation levels. The Ct values of bean sprout samples were higher than those of the chicken samples. Analysis of microbial distribution by 16S rRNA gene amplicon sequencing in enriched cultures of bean sprout samples showed that approximately >96 % of the population comprised unidentified genus of family Enterobacteriaceae and genus Acinetobacter in samples which E. albertii was not isolated. The sensitivity of the plating methods for chicken and bean sprout samples inoculated with a high inoculation level of E. albertii was 1.000 and 0.848-0.970, respectively. The sensitivity of the plating methods for chicken and bean sprout samples inoculated with a low inoculation level of E. albertii was 0.939-1.000 and 0.515-0.727, respectively. The E. albertii-positive rate in all colonies isolated in this study was 89-90 % in RX-DHL and RX-MAC, and 64 and 44 % in DHL and MAC, respectively. Therefore, the sensitivity of RX-supplemented agar was higher than that of the agars without these sugars. Using a combination of enrichment in CT-mEC and E. albertii isolation on selective agars supplemented with RX, E. albertii at an inoculation level of over 17.5 CFU/25 g of food was detected with a sensitivity of 1.000 and 0.667-0.727 in chicken and bean sprouts, respectively. Therefore, screening for E. albertii-specific genes using EA-rtPCR followed by isolation with RX-DHL or RX-MAC is an efficient method for E. albertii detection in food.
Collapse
Affiliation(s)
- Sakura Arai
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Keita Yanagimoto
- Department of Microbiology, Yamanashi Institute of Public Health and Environment, 1-7-31 Fujimi, Kofu, Yamanashi 400-0027, Japan
| | - Yuka Kojima
- Division of Microbiology, Kawasaki City Institute for Public Health, 3-25-13 Tonomachi, Kawasakiku Kawasaki, Kanagawa 210-0821, Japan
| | - Satoko Yamaya
- Miyagi Prefectural Institute of Public Health and Environment, 4-7-2, Saiwai-cho, Miyagino-ku, Sendai 983-0836, Japan
| | - Takuya Yamanaka
- Research Institute for Environmental Sciences and Public Health of Iwate Prefecture, 1-11-16 Kitaiioka, Morioka 020-0857, Japan
| | - Norihisa Matsunaga
- Fukuoka City Institute of Health and Environment, 2-1-34, Jigyohama, Chuo-ku, Fukuoka 810-0065, Japan
| | - Akihito Kobayashi
- Division of Microbiology, Mie Prefecture Health and Environment Research Institute, 3684-11 Sakura-cho, Yokkaichi 512-1211, Japan
| | - Naoto Takahashi
- Shizuoka City Institute of Environmental Sciences and Public Health, 1-4-7 Oguro, Suruga, Shizuoka 422-8072, Japan
| | - Takayuki Konno
- Akita Prefectural Research Center for Public Health and Environment, 6-6, Senshukubota-machi, Akita 010-0874, Japan
| | - Yuki Tokoi
- Utsunomiya City Institute of Public Health and Environment, 972 Takebayashi-machi, Utsunomiya 321-0974, Japan
| | - Nozomi Sakakida
- Saitama Institute of Public Health, 410-1 Ewai, Yoshimi-machi, Hiki-gun, Saitama 355-0133, Japan
| | - Noriko Konishi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-cho, Shinju-ku, Tokyo 169-0073, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan; Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
3
|
Arai S, Yamaya S, Ohtsuka K, Konishi N, Obata H, Ooka T, Hirose S, Kai A, Hara-Kudo Y. Detection of Escherichia albertii in Retail Oysters. J Food Prot 2022; 85:173-179. [PMID: 34591074 DOI: 10.4315/jfp-21-222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Escherichia albertii is an emerging foodborne pathogen. Owing to its distribution in river water, it is important to determine the presence of E. albertii in aquaculture-related foods. In this study, we investigated the distribution of E. albertii in retail oyster samples. A total of 427 raw oyster samples (385 Pacific oysters and 42 Japanese rock oysters) were enriched in modified Escherichia coli broth (mEC) or mEC supplemented with novobiocin (NmEC) at 42°C. The cultures were used for E. albertii-specific nested PCR assay, as well as for E. albertii isolation using deoxycholate hydrogen sulfide lactose agar (DHL), DHL supplemented with rhamnose and xylose, and MacConkey agar supplemented with rhamnose and xylose. The population of E. albertii in nested PCR-positive samples was determined using the most-probable-number (MPN) method. E. albertii isolates were subjected to biochemical and genetic characterization. E. albertii was detected in 5 (1.6%) of 315 Pacific oyster samples (one piece each), 2 (2.9%) of 70 Pacific oyster samples (25 g each), and 2 (4.8%) of 42 Japanese rock oyster samples procured from four geographically distinct regions. A total of 64 E. albertii strains were isolated from eight of the nine nested PCR assay-positive oyster samples, and the MPN value was under the detection limit (<3 MPN/10 g). A specific season or month for detecting E. albertii was not observed in this study, suggesting that the pathogen is present in seawater. All the E. albertii isolates, except one, were positive for the virulence factor eae, indicating that these isolates have the potential to infect humans. HIGHLIGHTS
Collapse
Affiliation(s)
- Sakura Arai
- Division of Microbiology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Satoko Yamaya
- Miyagi Prefectural Institute of Public Health and Environment, 4-7-2, Saiwai-cho, Miyagino-ku, Sendai 983-0836, Japan
| | - Kayoko Ohtsuka
- Saitama Institute of Public Health, 410-1, Ewai, Yoshimi-machi, Hiki-gun, Saitama 355-0133, Japan
| | - Noriko Konishi
- Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Hiromi Obata
- Tokyo Metropolitan Institute of Public Health, 3-24-1, Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima city, Kagoshima 890-8544, Japan
| | - Shouhei Hirose
- Division of Microbiology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Akemi Kai
- Japan Food Hygiene Association, 2-5-47, Tadao, Machida-city, Tokyo 194-0035, Japan
| | - Yukiko Hara-Kudo
- Division of Microbiology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|