1
|
Wu W, Huang J, Xu Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb Biotechnol 2024; 17:e14487. [PMID: 38801351 PMCID: PMC11129675 DOI: 10.1111/1751-7915.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.
Collapse
Affiliation(s)
- Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Xiong W, Perna A, Jacob IB, Lundgren BR, Wang G. The Enhancer-Binding Protein MifR, an Essential Regulator of α-Ketoglutarate Transport, Is Required for Full Virulence of Pseudomonas aeruginosa PAO1 in a Mouse Model of Pneumonia. Infect Immun 2022; 90:e0013622. [PMID: 36125307 PMCID: PMC9584295 DOI: 10.1128/iai.00136-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa PAO1 has an extensive metabolism, enabling it to utilize a wide range of structurally diverse compounds to meet its nutritional and energy needs. Interestingly, the utilization of some of the more unusual compounds often associated with a eukaryotic-host environment is regulated via enhancer-binding proteins (EBPs) in P. aeruginosa. Whether the utilization of such compounds and the EBPs involved contribute to the pathogenesis of P. aeruginosa remains to be fully understood. To narrow this gap, we investigated the roles of the EBPs EatR (regulator of ethanolamine catabolism), DdaR (regulator of methylarginine catabolism), and MifR (regulator of α-ketoglutarate or α-KG transport) in the virulence of P. aeruginosa PAO1 in a pneumonia-induced septic mouse model. Deletion of genes encoding EatR and DdaR had no significant effect on the mortality of P. aeruginosa PAO1-infected mice compared to wide-type (WT) PAO1-infected mice. In contrast, infected mice with ΔmifR mutant exhibited a significant reduction (~50%) in the mortality rate compared with WT PAO1 (P < 0.05). Infected mice with ΔmifR PAO1 had lower lung injury scores, fewer inflammatory cells, decreased proinflammatory cytokines, and decreased apoptosis and cell death compared to mice infected with WT PAO1 (P < 0.05). Furthermore, molecular analysis revealed decreased NLRP3 inflammasome activation in infected mice with ΔmifR PAO1 compared to WT PAO1 (P < 0.05). These results suggested that the utilization of α-KG was a contributing factor in P. aeruginosa-mediated pneumonia and sepsis and that MifR-associated regulation may be a potential therapeutic target for P. aeruginosa infectious disease.
Collapse
Affiliation(s)
- Weichuan Xiong
- Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Alexander Perna
- Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | - Ikechukwu B. Jacob
- Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| | | | - Guirong Wang
- Department of Surgery, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
3
|
Gallagher LA, Velazquez E, Peterson SB, Charity JC, Radey MC, Gebhardt MJ, Hsu F, Shull LM, Cutler KJ, Macareno K, de Moraes MH, Penewit KM, Kim J, Andrade PA, LaFramboise T, Salipante SJ, Reniere ML, de Lorenzo V, Wiggins PA, Dove SL, Mougous JD. Genome-wide protein-DNA interaction site mapping in bacteria using a double-stranded DNA-specific cytosine deaminase. Nat Microbiol 2022; 7:844-855. [PMID: 35650286 PMCID: PMC9159945 DOI: 10.1038/s41564-022-01133-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
DNA-protein interactions are central to fundamental cellular processes, yet widely implemented technologies for measuring these interactions on a genome scale in bacteria are laborious and capture only a snapshot of binding events. We devised a facile method for mapping DNA-protein interaction sites in vivo using the double-stranded DNA-specific cytosine deaminase toxin DddA. In 3D-seq (DddA-sequencing), strains containing DddA fused to a DNA-binding protein of interest accumulate characteristic mutations in DNA sequence adjacent to sites occupied by the DNA-bound fusion protein. High-depth sequencing enables detection of sites of increased mutation frequency in these strains, yielding genome-wide maps of DNA-protein interaction sites. We validated 3D-seq for four transcription regulators in two bacterial species, Pseudomonas aeruginosa and Escherichia coli. We show that 3D-seq offers ease of implementation, the ability to record binding event signatures over time and the capacity for single-cell resolution.
Collapse
Affiliation(s)
- Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Elena Velazquez
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Systems Biology Department, National Center of Biotechnology CSIC, Madrid, Spain
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - James C Charity
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Michael J Gebhardt
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - FoSheng Hsu
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Lauren M Shull
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Kevin J Cutler
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Keven Macareno
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kelsi M Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jennifer Kim
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Pia A Andrade
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Victor de Lorenzo
- Systems Biology Department, National Center of Biotechnology CSIC, Madrid, Spain
| | - Paul A Wiggins
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Yu C, Yang F, Xue D, Wang X, Chen H. The Regulatory Functions of σ 54 Factor in Phytopathogenic Bacteria. Int J Mol Sci 2021; 22:ijms222312692. [PMID: 34884502 PMCID: PMC8657755 DOI: 10.3390/ijms222312692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
σ54 factor (RpoN), a type of transcriptional regulatory factor, is widely found in pathogenic bacteria. It binds to core RNA polymerase (RNAP) and regulates the transcription of many functional genes in an enhancer-binding protein (EBP)-dependent manner. σ54 has two conserved functional domains: the activator-interacting domain located at the N-terminal and the DNA-binding domain located at the C-terminal. RpoN directly binds to the highly conserved sequence, GGN10GC, at the −24/−12 position relative to the transcription start site of target genes. In general, bacteria contain one or two RpoNs but multiple EBPs. A single RpoN can bind to different EBPs in order to regulate various biological functions. Thus, the overlapping and unique regulatory pathways of two RpoNs and multiple EBP-dependent regulatory pathways form a complex regulatory network in bacteria. However, the regulatory role of RpoN and EBPs is still poorly understood in phytopathogenic bacteria, which cause economically important crop diseases and pose a serious threat to world food security. In this review, we summarize the current knowledge on the regulatory function of RpoN, including swimming motility, flagella synthesis, bacterial growth, type IV pilus (T4Ps), twitching motility, type III secretion system (T3SS), and virulence-associated phenotypes in phytopathogenic bacteria. These findings and knowledge prove the key regulatory role of RpoN in bacterial growth and pathogenesis, as well as lay the groundwork for further elucidation of the complex regulatory network of RpoN in bacteria.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
| | - Dingrong Xue
- National Engineering Laboratory of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, Beijing 100037, China;
| | - Xiuna Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.Y.); (F.Y.)
- Correspondence:
| |
Collapse
|
5
|
Fraser-Pitt DJ, Dolan SK, Toledo-Aparicio D, Hunt JG, Smith DW, Lacy-Roberts N, Nupe Hewage PS, Stoyanova TN, Manson E, McClean K, Inglis NF, Mercer DK, O’Neil DA. Cysteamine Inhibits Glycine Utilisation and Disrupts Virulence in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:718213. [PMID: 34631600 PMCID: PMC8494450 DOI: 10.3389/fcimb.2021.718213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic human pathogen which employs a myriad of virulence factors. In people with cystic fibrosis (CF) P. aeruginosa frequently colonises the lungs and becomes a chronic infection that evolves to become less virulent over time, but often adapts to favour persistence in the host with alginate-producing mucoid, slow-growing, and antibiotic resistant phenotypes emerging. Cysteamine is an endogenous aminothiol which has been shown to prevent biofilm formation, reduce phenazine production, and potentiate antibiotic activity against P. aeruginosa, and has been investigated in clinical trials as an adjunct therapy for pulmonary exacerbations of CF. Here we demonstrate (for the first time in a prokaryote) that cysteamine prevents glycine utilisation by P. aeruginosa in common with previously reported activity blocking the glycine cleavage system in human cells. Despite the clear inhibition of glycine metabolism, cysteamine also inhibits hydrogen cyanide (HCN) production by P. aeruginosa, suggesting a direct interference in the regulation of virulence factor synthesis. Cysteamine impaired chemotaxis, lowered pyocyanin, pyoverdine and exopolysaccharide production, and reduced the toxicity of P. aeruginosa secreted factors in a Galleria mellonella infection model. Thus, cysteamine has additional potent anti-virulence properties targeting P. aeruginosa, further supporting its therapeutic potential in CF and other infections.
Collapse
Affiliation(s)
| | - Stephen K. Dolan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Piumi Sara Nupe Hewage
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Teodora N. Stoyanova
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Erin Manson
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin McClean
- Proteomics Facility Services, Moredun Research Institute, Penicuik, United Kingdom
| | - Neil F. Inglis
- Proteomics Facility Services, Moredun Research Institute, Penicuik, United Kingdom
| | | | | |
Collapse
|
6
|
Camakaris H, Yang J, Fujii T, Pittard J. Activation by TyrR in Escherichia coli K-12 by Interaction between TyrR and the α-Subunit of RNA Polymerase. J Bacteriol 2021; 203:e0025221. [PMID: 34309399 PMCID: PMC8425403 DOI: 10.1128/jb.00252-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
A novel selection was developed for mutants of the C-terminal domain of RpoA (α-CTD) altered in activation by the TyrR regulatory protein of Escherichia coli K-12. This allowed the identification of an aspartate to asparagine substitution at residue 250 (DN250) as an activation-defective (Act-) mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and the substitutions DR250, RE310, and RD310 were all shown to be defective in activation. None of these mutations caused defects in regulation of the upstream promoter (UP) element. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. The TyrR mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77, and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, and EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act-tyrR mutants were isolated in an rpoA+ strain, adding positions R77, D97, K101, D118, R119, R121, and E141 to known residues S95 and D103 and defining the activation patch on the amino-terminal domain (NTD) of TyrR. These results support a model for activation of TyrR-regulated genes where the activation patch on the TyrR NTD interacts with the TyrR-specific patch on the α-CTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants as activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene tyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore, TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence and important plant interactions.
Collapse
Affiliation(s)
- Helen Camakaris
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ji Yang
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - James Pittard
- School of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Complex effects of macrolide venturicidins on bacterial F-ATPases likely contribute to their action as antibiotic adjuvants. Sci Rep 2021; 11:13631. [PMID: 34211053 PMCID: PMC8249445 DOI: 10.1038/s41598-021-93098-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial energy metabolism is now recognized as a critical factor for the efficacy of antibiotics. The F-type ATPase/ATP synthase (FOF1) is a central player in cellular bioenergetics of bacteria and eukaryotes, and its potential as a selective antibiotic target has been confirmed by the success of bedaquiline in combatting multidrug-resistant tuberculosis. Venturicidin macrolides were initially identified for their antifungal properties and were found to specifically inhibit FOF1 of eukaryotes and bacteria. Venturicidins alone are not effective antibacterials but recently were found to have adjuvant activity, potentiating the efficacy of aminoglycoside antibiotics against several species of resistant bacteria. Here we discovered more complex effects of venturicidins on the ATPase activity of FOF1 in bacterial membranes from Escherichia coli and Pseudomonas aeruginosa. Our major finding is that higher concentrations of venturicidin induce time- and ATP-dependent decoupling of F1-ATPase activity from the venturicidin-inhibited, proton-transporting FO complex. This dysregulated ATPase activity is likely to be a key factor in the depletion of cellular ATP induced by venturicidins in prior studies with P. aeruginosa and Staphylococcus aureus. Further studies of how this functional decoupling occurs could guide development of new antibiotics and/or adjuvants that target the F-type ATPase/ATP synthase.
Collapse
|
8
|
Sarwar Z, Wang MX, Lundgren BR, Nomura CT. MifS, a DctB family histidine kinase, is a specific regulator of α-ketoglutarate response in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2021; 166:867-879. [PMID: 32553056 DOI: 10.1099/mic.0.000943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The C5-dicarboxylate α-ketoglutarate (α-KG) is a preferred nutrient source for the opportunistic pathogen Pseudomonas aeruginosa. However, very little is known about how P. aeruginosa detects and responds to α-KG in the environment. Our laboratory has previously shown that the MifS/MifR two-component signal transduction system regulates α-KG assimilation in P. aeruginosa PAO1. In an effort to better understand how this bacterium detects α-KG, we characterized the MifS sensor histidine kinase. In this study we show that although MifS is a homologue of the C4-dicarboxylate sensor DctB, it specifically responds to the C5-dicarboxylate α-KG. MifS activity increased >10-fold in the presence of α-KG, while the related C5-dicarboxylate glutarate caused only a 2-fold increase in activity. All other dicarboxylates tested did not show any significant effect on MifS activity. Homology modelling of the MifS sensor domain revealed a substrate binding pocket for α-KG. Using protein modelling and mutational analysis, we identified nine residues that are important for α-KG response, including one residue that determines the substrate specificity of MifS. Further, we found that MifS has a novel cytoplasmic linker domain that is required for α-KG response and is probably involved in signal transduction from the sensor domain to the cytoplasmic transmitter domain. Until this study, DctB family histidine kinases were known to only respond to C4-dicarboxylates. Our work shows that MifS is a novel member of the DctB family histidine kinase that specifically responds to α-KG.
Collapse
Affiliation(s)
- Zaara Sarwar
- Department of Biology, The College of New Jersey, Ewing, New Jersey, USA
| | - Michael X Wang
- Present address: Biomedical Sciences Graduate Program, University of California, San Diego, California, USA.,Department of Chemistry, The State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Benjamin R Lundgren
- Department of Chemistry, The State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Christopher T Nomura
- Center for Applied Microbiology, The State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA.,Department of Chemistry, The State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| |
Collapse
|
9
|
Collins AJ, Smith TJ, Sondermann H, O'Toole GA. From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annu Rev Microbiol 2020; 74:607-631. [PMID: 32689917 DOI: 10.1146/annurev-micro-011520-094214] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are the dominant bacterial lifestyle. The regulation of the formation and dispersal of bacterial biofilms has been the subject of study in many organisms. Over the last two decades, the mechanisms of Pseudomonas fluorescens biofilm formation and regulation have emerged as among the best understood of any bacterial biofilm system. Biofilm formation by P. fluorescens occurs through the localization of an adhesin, LapA, to the outer membrane via a variant of the classical type I secretion system. The decision between biofilm formation and dispersal is mediated by LapD, a c-di-GMP receptor, and LapG, a periplasmic protease, which together control whether LapA is retained or released from the cell surface. LapA localization is also controlled by a complex network of c-di-GMP-metabolizing enzymes. This review describes the current understanding of LapA-mediated biofilm formation by P. fluorescens and discusses several emerging models for the regulation and function of this adhesin.
Collapse
Affiliation(s)
- Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| | - T Jarrod Smith
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA; .,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - George A O'Toole
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| |
Collapse
|
10
|
Jijón-Moreno S, Baca BE, Castro-Fernández DC, Ramírez-Mata A. TyrR is involved in the transcriptional regulation of biofilm formation and D-alanine catabolism in Azospirillum brasilense Sp7. PLoS One 2019; 14:e0211904. [PMID: 30763337 PMCID: PMC6375630 DOI: 10.1371/journal.pone.0211904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/22/2019] [Indexed: 01/03/2023] Open
Abstract
Azospirillum brasilense is one of the most studied species of diverse agronomic plants worldwide. The benefits conferred to plants inoculated with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen and synthesize phytohormones, especially indole-3-acetic acid (IAA). The principal pathway for IAA synthesis involves the intermediate metabolite indole pyruvic acid. Successful colonization of plants by Azospirillum species is fundamental to the ability of these bacteria to promote the beneficial effects observed in plants. Biofilm formation is an essential step in this process and involves interactions with the host plant. In this study, the tyrR gene was cloned, and the translated product was observed to exhibit homology to TyrR protein, a NtrC/NifA-type activator. Structural studies of TyrR identified three putative domains, including a domain containing binding sites for aromatic amino acids in the N-terminus, a central AAA+ ATPase domain, and a helix-turn-helix DNA binding motif domain in the C-terminus, which binds DNA sequences in promoter-operator regions. In addition, a bioinformatic analysis of promoter sequences in A. brasilense Sp7 genome revealed that putative promoters encompass one to three TyrR boxes in genes predicted to be regulated by TyrR. To gain insight into the phenotypes regulated by TyrR, a tyrR-deficient strain derived from A. brasilense Sp7, named A. brasilense 2116 and a complemented 2116 strain harboring a plasmid carrying the tyrR gene were constructed. The observed phenotypes indicated that the putative transcriptional regulator TyrR is involved in biofilm production and is responsible for regulating the utilization of D-alanine as carbon source. In addition, TyrR was observed to be absolutely required for transcriptional regulation of the gene dadA encoding a D-amino acid dehydrogenase. The data suggested that TyrR may play a major role in the regulation of genes encoding a glucosyl transferase, essential signaling proteins, and amino acids transporters.
Collapse
Affiliation(s)
- Saúl Jijón-Moreno
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla., Puebla, Puebla, México
| | - Beatriz Eugenia Baca
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla., Puebla, Puebla, México
| | - Diana Carolina Castro-Fernández
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla., Puebla, Puebla, México
| | - Alberto Ramírez-Mata
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla., Puebla, Puebla, México
- * E-mail:
| |
Collapse
|
11
|
SfnR2 Regulates Dimethyl Sulfide-Related Utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:JB.00606-18. [PMID: 30478084 DOI: 10.1128/jb.00606-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Dimethyl sulfide (DMS) is a volatile sulfur compound produced mainly from the degradation of dimethylsulfoniopropionate (DMSP) in marine environments. DMS undergoes oxidation to form dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2), and methanesulfonate (MSA), all of which occur in terrestrial environments and are accessible for consumption by various microorganisms. The purpose of the present study was to determine how the enhancer-binding proteins SfnR1 and SfnR2 contribute to the utilization of DMS and its derivatives in Pseudomonas aeruginosa PAO1. First, results from cell growth experiments showed that deletion of either sfnR2 or sfnG, a gene encoding a DMSO2-monooxygenase, significantly inhibits the ability of P. aeruginosa PAO1 to use DMSP, DMS, DMSO, and DMSO2 as sulfur sources. Deletion of the sfnR1 or msuEDC genes, which encode a MSA desulfurization pathway, did not abolish the growth of P. aeruginosa PAO1 on any sulfur compound tested. Second, data collected from β-galactosidase assays revealed that the msuEDC-sfnR1 operon and the sfnG gene are induced in response to sulfur limitation or nonpreferred sulfur sources, such as DMSP, DMS, and DMSO, etc. Importantly, SfnR2 (and not SfnR1) is essential for this induction. Expression of sfnR2 is induced under sulfur limitation but independently of SfnR1 or SfnR2. Finally, the results of this study suggest that the main function of SfnR2 is to direct the initial activation of the msuEDC-sfnR1 operon in response to sulfur limitation or nonpreferred sulfur sources. Once expressed, SfnR1 contributes to the expression of msuEDC-sfnR1, sfnG, and other target genes involved in DMS-related metabolism in P. aeruginosa PAO1.IMPORTANCE Dimethyl sulfide (DMS) is an important environmental source of sulfur, carbon, and/or energy for microorganisms. For various bacteria, including Pseudomonas, Xanthomonas, and Azotobacter, DMS utilization is thought to be controlled by the transcriptional regulator SfnR. Adding more complexity, some bacteria, such as Acinetobacter baumannii, Enterobacter cloacae, and Pseudomonas aeruginosa, possess two, nonidentical SfnR proteins. In this study, we demonstrate that SfnR2 and not SfnR1 is the principal regulator of DMS metabolism in P. aeruginosa PAO1. Results suggest that SfnR1 has a supportive but nonessential role in the positive regulation of genes required for DMS utilization. This study not only enhances our understanding of SfnR regulation but, importantly, also provides a framework for addressing gene regulation through dual SfnR proteins in other bacteria.
Collapse
|
12
|
RpoN-Dependent Direct Regulation of Quorum Sensing and the Type VI Secretion System in Pseudomonas aeruginosa PAO1. J Bacteriol 2018; 200:JB.00205-18. [PMID: 29760208 DOI: 10.1128/jb.00205-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen of humans, particularly those with cystic fibrosis. As a global regulator, RpoN controls a group of virulence-related factors and quorum-sensing (QS) genes in P. aeruginosa To gain further insights into the direct targets of RpoN in vivo, the present study focused on identifying the direct targets of RpoN regulation in QS and the type VI secretion system (T6SS). We performed chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) that identified 1,068 binding sites of RpoN, mostly including metabolic genes, a group of genes in QS (lasI, rhlI, and pqsR) and the T6SS (hcpA and hcpB). The direct targets of RpoN have been verified by electrophoretic mobility shifts assays (EMSA), lux reporter assay, reverse transcription-quantitative PCR, and phenotypic detection. The ΔrpoN::Tc mutant resulted in the reduced production of pyocyanin, motility, and proteolytic activity. However, the production of rhamnolipids and biofilm formation were higher in the ΔrpoN::Tc mutant than in the wild type. In summary, the results indicated that RpoN had direct and profound effects on QS and the T6SS.IMPORTANCE As a global regulator, RpoN controls a wide range of biological pathways, including virulence in P. aeruginosa PAO1. This work shows that RpoN plays critical and global roles in the regulation of bacterial pathogenicity and fitness. ChIP-seq provided a useful database to characterize additional functions and targets of RpoN in the future. The functional characterization of RpoN-mediated regulation will improve the current understanding of the regulatory network of quorum sensing and virulence in P. aeruginosa and other bacteria.
Collapse
|
13
|
Pu M, Sheng L, Song S, Gong T, Wood TK. Serine Hydroxymethyltransferase ShrA (PA2444) Controls Rugose Small-Colony Variant Formation in Pseudomonas aeruginosa. Front Microbiol 2018; 9:315. [PMID: 29535691 PMCID: PMC5835335 DOI: 10.3389/fmicb.2018.00315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/09/2018] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa causes many biofilm infections, and the rugose small-colony variants (RSCVs) of this bacterium are important for infection. We found here that inactivation of PA2444, which we determined to be a serine hydroxymethyltransferase (SHMT), leads to the RSCV phenotype of P. aeruginosa PA14. In addition, loss of PA2444 increases biofilm formation by two orders of magnitude, increases exopolysaccharide by 45-fold, and abolishes swarming. The RSCV phenotype is related to higher cyclic diguanylate concentrations due to increased activity of the Wsp chemosensory system, including diguanylate cyclase WspR. By characterizing the PA2444 enzyme in vitro, we determined the physiological function of PA2444 protein by relating it to S-adenosylmethionine (SAM) concentrations and methylation of a membrane bound methyl-accepting chemotaxis protein WspA. A whole transcriptome analysis also revealed PA2444 is related to the redox state of the cells, and the altered redox state was demonstrated by an increase in the intracellular NADH/NAD+ ratio. Hence, we provide a mechanism for how an enzyme of central metabolism controls the community behavior of the bacterium, and suggest the PA2444 protein should be named ShrA for serine hydroxymethyltransferase related to rugose colony formation.
Collapse
Affiliation(s)
| | | | | | | | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
14
|
Yan H, Wang M, Sun F, Dandekar AA, Shen D, Li N. A Metabolic Trade-Off Modulates Policing of Social Cheaters in Populations of Pseudomonas aeruginosa. Front Microbiol 2018. [PMID: 29535700 PMCID: PMC5835063 DOI: 10.3389/fmicb.2018.00337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of public goods such as the secreted protease elastase. P. aeruginosa requires the LasI-LasR QS circuit to induce elastase and enable growth on casein as the sole carbon and energy source. The LasI-LasR system also induces a second QS circuit, the RhlI-RhlR system. During growth on casein, LasR-mutant social cheaters emerge, and this can lead to a population collapse. In a minimal medium containing ammonium sulfate as a nitrogen source, populations do not collapse, and cheaters and cooperators reach a stable equilibrium; however, without ammonium sulfate, cheaters overtake the cooperators and populations collapse. We show that ammonium sulfate enhances the activity of the RhlI-RhlR system in casein medium and this leads to increased production of cyanide, which serves to control levels of cheaters. This enhancement of cyanide production occurs because of a trade-off in the metabolism of glycine: exogenous ammonium ion inhibits the transformation of glycine to 5,10-methylenetetrahydrofolate through a reduction in the expression of the glycine cleavage genes gcvP1 and gcvP2, thereby increasing the availability of glycine as a substrate for RhlR-regulated hydrogen cyanide synthesis. Thus, environmental ammonia enhances cyanide production and stabilizes QS in populations of P. aeruginosa.
Collapse
Affiliation(s)
- Huicong Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Meizhen Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Feng Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Dongsheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| | - Na Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou, China
| |
Collapse
|
15
|
Scheel RA, Ji L, Lundgren BR, Nomura CT. Enhancing poly(3-hydroxyalkanoate) production in Escherichia coli by the removal of the regulatory gene arcA. AMB Express 2016; 6:120. [PMID: 27878786 PMCID: PMC5120623 DOI: 10.1186/s13568-016-0291-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
Recombinant Escherichia coli is a desirable platform for the production of many biological compounds including poly(3-hydroxyalkanoates), a class of naturally occurring biodegradable polyesters with promising biomedical and material applications. Although the controlled production of desirable polymers is possible with the utilization of fatty acid feedstocks, a central challenge to this biosynthetic route is the improvement of the relatively low polymer yield, a necessary factor of decreasing the production costs. In this study we sought to address this challenge by deleting arcA and ompR, two global regulators with the capacity to inhibit the uptake and activation of exogenous fatty acids. We found that polymer yields in a ΔarcA mutant increased significantly with respect to the parental strain. In the parental strain, PHV yields were very low but improved 64-fold in the ΔarcA mutant (1.92-124 mg L-1) The ΔarcA mutant also allowed for modest increases in some medium chain length polymer yields, while weight average molecular weights improved by approximately 1.5-fold to 12-fold depending on the fatty acid substrate utilized. These results were supported by an analysis of differential gene expression, which showed that the key genes (fadD, fadL, and fadE) encoding fatty acid degradation enzymes were all upregulated by 2-, 10-, and 31-fold in an ΔarcA mutant, respectively. Additionally, the short chain length fatty acid uptake genes atoA, atoE and atoD were upregulated by 103-, 119-, and 303-fold respectively, though these values are somewhat inflated due to low expression in the parental strain. Overall, this study demonstrates that arcA is an important target to improve PHA production from fatty acids.
Collapse
Affiliation(s)
- Ryan A. Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Liyuan Ji
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Benjamin R. Lundgren
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Center for Applied Microbiology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Hubei Collaborative Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
16
|
Ethanolamine Catabolism in Pseudomonas aeruginosa PAO1 Is Regulated by the Enhancer-Binding Protein EatR (PA4021) and the Alternative Sigma Factor RpoN. J Bacteriol 2016; 198:2318-29. [PMID: 27325678 DOI: 10.1128/jb.00357-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/13/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Although genes encoding enzymes and proteins related to ethanolamine catabolism are widely distributed in the genomes of Pseudomonas spp., ethanolamine catabolism has received little attention among this metabolically versatile group of bacteria. In an attempt to shed light on this subject, this study focused on defining the key regulatory factors that govern the expression of the central ethanolamine catabolic pathway in Pseudomonas aeruginosa PAO1. This pathway is encoded by the PA4022-eat-eutBC operon and consists of a transport protein (Eat), an ethanolamine-ammonia lyase (EutBC), and an acetaldehyde dehydrogenase (PA4022). EutBC is an essential enzyme in ethanolamine catabolism because it hydrolyzes this amino alcohol into ammonia and acetaldehyde. The acetaldehyde intermediate is then converted into acetate in a reaction catalyzed by acetaldehyde dehydrogenase. Using a combination of growth analyses and β-galactosidase fusions, the enhancer-binding protein PA4021 and the sigma factor RpoN were shown to be positive regulators of the PA4022-eat-eutBC operon in P. aeruginosa PAO1. PA4021 and RpoN were required for growth on ethanolamine, and both of these regulatory proteins were essential for induction of the PA4022-eat-eutBC operon. Unexpectedly, the results indicate that acetaldehyde (and not ethanolamine) serves as the inducer molecule that is sensed by PA4021 and leads to the transcriptional activation of the PA4022-eat-eutBC operon. Due to its regulatory role in ethanolamine catabolism, PA4021 was given the name EatR. Both EatR and its target genes are conserved in several other Pseudomonas spp., suggesting that these bacteria share a mechanism for regulating ethanolamine catabolism. IMPORTANCE The results of this study provide a basis for understanding ethanolamine catabolism and its regulation in Pseudomonas aeruginosa PAO1. Interestingly, expression of the ethanolamine-catabolic genes in this bacterium was found to be under the control of a positive-feedback regulatory loop in a manner dependent on the transcriptional regulator PA4021, the sigma factor RpoN, and the metabolite acetaldehyde. Previously characterized regulators of ethanolamine catabolism are known to sense and respond directly to ethanolamine. In contrast, PA4021 (EatR) appears to monitor the intracellular levels of free acetaldehyde and responds through transcriptional activation of the ethanolamine-catabolic genes. This regulatory mechanism is unique and represents an alternative strategy used by bacteria to govern the acquisition of ethanolamine from their surroundings.
Collapse
|