1
|
Gozalo AS, Robinson CK, Holdridge J, Franco Mahecha OL, Elkins WR. Overview of Plasmodium spp. and Animal Models in Malaria Research. Comp Med 2024; 74:205-230. [PMID: 38902006 PMCID: PMC11373680 DOI: 10.30802/aalas-cm-24-000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Malaria is a parasitic disease caused by protozoan species of the genus Plasmodium and transmitted by female mosquitos of the genus Anopheles and other Culicidae. Most of the parasites of the genus Plasmodium are highly species specific with more than 200 species described affecting different species of mammals, birds, and reptiles. Plasmodium species strictly affecting humans are P. falciparum, P. vivax, P. ovale, and P. malariae. More recently, P. knowlesi and other nonhuman primate plasmodia were found to naturally infect humans. Currently, malaria occurs mostly in poor tropical and subtropical areas of the world, and in many of these countries it is the leading cause of illness and death. For more than 100 y, animal models, have played a major role in our understanding of malaria biology. Avian Plasmodium species were the first to be used as models to study human malaria. Malaria parasite biology and immunity were first studied using mainly P. gallinaceum and P. relictum. Rodent malarias, particularly P. berghei and P. yoelii, have been used extensively as models to study malaria in mammals. Several species of Plasmodium from nonhuman primates have been used as surrogate models to study human malaria immunology, pathogenesis, candidate vaccines, and treatments. Plasmodium cynomolgi, P. simiovale, and P. fieldi are important models for studying malaria produced by P. vivax and P. ovale, while P. coatneyi is used as a model for study- ing severe malaria. Other nonhuman primate malarias used in research are P. fragile, P. inui, P. knowlesi, P. simium, and P. brasilianum. Very few nonhuman primate species can develop an infection with human malarias. Macaques in general are resistant to infection with P. falciparum, P. vivax, P. malariae, and P. ovale. Only apes and a few species of New World monkeys can support infection with human malarias. Herein we review the most common, and some less common, avian, reptile, and mammal plasmodia species used as models to study human malaria.
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Christen K Robinson
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Julie Holdridge
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Olga L Franco Mahecha
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - William R Elkins
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
2
|
Ulloa GM, Greenwood AD, Cornejo OE, Monteiro FOB, Scofield A, Santolalla Robles ML, Lescano AG, Mayor P. Phylogenetic congruence of Plasmodium spp. and wild ungulate hosts in the Peruvian Amazon. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105554. [PMID: 38246398 PMCID: PMC11331447 DOI: 10.1016/j.meegid.2024.105554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Malaria parasites are known to infect a variety of vertebrate hosts, including ungulates. However, ungulates of Amazonia have not been investigated. We report for the first time, the presence of parasite lineages closely related to Plasmodium odocoilei clade 1 and clade 2 in free-ranging South American red-brocket deer (Mazama americana; 44.4%, 4/9) and gray-brocket deer (Mazama nemorivaga; 50.0%, 1/2). We performed PCR-based analysis of blood samples from 47 ungulates of five different species collected during subsistence hunting by an indigenous community in the Peruvian Amazon. We detected Plasmodium malariae/brasilianum lineage in a sample from red-brocket deer. However, no parasite DNA was detected in collared peccary (Pecari tajacu; 0.0%, 0/10), white-lipped peccary (Tayassu pecari; 0.0%, 0/15), and tapir (Tapirus terrestris; 0.0%, 0/11). Concordant phylogenetic analyses suggested a possible co-evolutionary relationship between the Plasmodium lineages found in American deer and their hosts.
Collapse
Affiliation(s)
- Gabriela M Ulloa
- Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Bellaterra-Barcelona E-08193, Spain; Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil; Grupo de Enfermedades Infecciosas Re-Emergentes, Universidad Científica del Sur (UCSUR), Lima, Peru.
| | - Alex D Greenwood
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, Berlin 10315, Germany; School of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Germany
| | - Omar E Cornejo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States of America
| | - Frederico Ozanan Barros Monteiro
- Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil
| | - Alessandra Scofield
- Laboratory of Animal Parasitology, Postgraduate Program in Animal Health in the Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Brazil
| | - Meddly L Santolalla Robles
- Emerge, Research Unit on Emerging Diseases and Climate Change, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andres G Lescano
- Emerge, Research Unit on Emerging Diseases and Climate Change, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pedro Mayor
- Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Edifici V, Bellaterra-Barcelona E-08193, Spain; Programa de Pós-Graduação em Saúde e Produção Animal na Amazônia, Universidade Federal Rural da Amazônia (UFRA), Av. Presidente Tancredo Neves 2501, Terra Firme, Belém 66077-830, Pará, Brazil; Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica (COMFAUNA), 332 Malecon Tarapaca, Iquitos, Peru; Museo de Culturas Indígenas Amazónicas, Loreto, Iquitos, Peru.
| |
Collapse
|
3
|
Huaman JL, Pacioni C, Forsyth DM, Pople A, Hampton JO, Helbig KJ, Carvalho TG. Evaluation of haemoparasite and Sarcocystis infections in Australian wild deer. Int J Parasitol Parasites Wildl 2021; 15:262-269. [PMID: 34277336 PMCID: PMC8261462 DOI: 10.1016/j.ijppaw.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Wild animals are natural reservoir hosts for a variety of pathogens that can be transmitted to other wildlife, livestock, other domestic animals, and humans. Wild deer (family Cervidae) in Europe, Asia, and North and South America have been reported to be infected with gastrointestinal and vector-borne parasites. In Australia, wild deer populations have expanded considerably in recent years, yet there is little information regarding which pathogens are present and whether these pathogens pose biosecurity threats to humans, wildlife, livestock, or other domestic animals. To address this knowledge gap, PCR-based screening for five parasitic genera was conducted in blood samples (n = 243) sourced from chital deer (Axis axis), fallow deer (Dama dama), rusa deer (Rusa timorensis) and sambar deer (Rusa unicolor) sampled in eastern Australia. These blood samples were tested for the presence of DNA from Plasmodium spp., Trypanosoma spp., Babesia spp., Theileria spp. and Sarcocystis spp. Further, the presence of antibodies against Babesia bovis was investigated in serum samples (n = 105) by immunofluorescence. In this study, neither parasite DNA nor antibodies were detected for any of the five genera investigated. These results indicate that wild deer are not currently host reservoirs for Plasmodium, Trypanosoma, Babesia, Theileria or Sarcocystis parasites in eastern Australia. We conclude that in eastern Australia, wild deer do not currently play a significant role in the transmission of these parasites. This survey represents the first large-scale molecular study of its type in Australian wild deer and provides important baseline information about the parasitic infection status of these animals. The expanding populations of wild deer throughout Australia warrant similar surveys in other parts of the country and surveillance efforts to continually assess the level of threat wild deer could pose to humans, wildlife, livestock and other domestic animals.
Collapse
Affiliation(s)
- Jose L. Huaman
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Carlo Pacioni
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Victoria, 3084, Australia
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - David M. Forsyth
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, New South Wales, 2800, Australia
| | - Anthony Pople
- Invasive Plants & Animals Research, Biosecurity Queensland, Department of Agriculture and Fisheries, Ecosciences Precinct, Brisbane, Queensland, 4102, Australia
| | - Jordan O. Hampton
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
- Ecotone Wildlife, PO Box 76, Inverloch, Victoria, 3996, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Teresa G. Carvalho
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
4
|
Hodge JM, Yurchenko AA, Karagodin DA, Masri RA, Smith RC, Gordeev MI, Sharakhova MV. The new Internal Transcribed Spacer 2 diagnostic tool clarifies the taxonomic position and geographic distribution of the North American malaria vector Anopheles punctipennis. Malar J 2021; 20:141. [PMID: 33691700 PMCID: PMC7944907 DOI: 10.1186/s12936-021-03676-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.
Collapse
Affiliation(s)
- James M Hodge
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Andrey A Yurchenko
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomics Center, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Dmitriy A Karagodin
- Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Reem A Masri
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Mikhail I Gordeev
- Department of General Biology and Ecology, Moscow Region State University, Moscow, Russia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. .,Laboratory of Evolutionary Genomics of Insects, the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
5
|
Armstrong C, Davies RG, González‐Quevedo C, Dunne M, Spurgin LG, Richardson DS. Adaptive landscape genetics and malaria across divergent island bird populations. Ecol Evol 2019; 9:12482-12502. [PMID: 31788192 PMCID: PMC6875583 DOI: 10.1002/ece3.5700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Environmental conditions play a major role in shaping the spatial distributions of pathogens, which in turn can drive local adaptation and divergence in host genetic diversity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, impacting survival and fitness of hosts, with geographic distributions largely determined by habitat suitability for their insect vectors. Here, we have tested whether patterns of fine-scale local adaptation to malaria are replicated across discrete, ecologically differing island populations of Berthelot's pipits Anthus berthelotii. We sequenced TLR4, an innate immunity gene that is potentially under positive selection in Berthelot's pipits, and two SNPs previously identified as being associated with malaria infection in a genome-wide association study (GWAS) in Berthelot's pipits in the Canary Islands. We determined the environmental predictors of malaria infection, using these to estimate variation in malaria risk on Porto Santo, and found some congruence with previously identified environmental risk factors on Tenerife. We also found a negative association between malaria infection and a TLR4 variant in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria risk in Porto Santo, but in the opposite direction to that found in the Canary Islands GWAS. Together, these findings suggest that disease-driven local adaptation may be an important factor in shaping variation among island populations.
Collapse
Affiliation(s)
| | | | - Catalina González‐Quevedo
- School of Biological SciencesUniversity of East AngliaNorwichUK
- Grupo Ecología y Evolución de VertebradosInstituto de BiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
| | - Molly Dunne
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
6
|
Cauvin A, Hood K, Shuman R, Orange J, Blackburn JK, Sayler KA, Wisely SM. The impact of vector control on the prevalence of Theileria cervi in farmed Florida white-tailed deer, Odocoileus virginianus. Parasit Vectors 2019; 12:100. [PMID: 30867021 PMCID: PMC6417225 DOI: 10.1186/s13071-019-3344-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background Vector-borne diseases exert a global economic impact to the livestock industry. Understanding how agriculture practices and acaricide usage affect the ecology of these diseases is important for making informed management decisions. Theileria cervi is a hemoprotozoan parasite infecting white-tailed deer (Odocoileus virginianus) and is transmitted by the lone star tick, Amblyomma americanum. The purpose of this study was to determine if acaricide treatment decreased hematozoan prevalence in farmed white-tailed deer when compared to geographically-close wild deer or altered the genotypes of T. cervi present. Results We compared prevalence of T. cervi in 52 farmed adult white-tailed deer which were regularly treated with permethrin and ivermectin, 53 farmed neonates that did not receive treatment for vector control, and 42 wild deer that received no form of chemical vector control. Wild deer had significantly higher prevalence of T. cervi than farmed deer. Additionally, no neonate fawns tested positive for T. cervi, and we found that age was a significant predictor of infection status. We found no difference in genotypic variation in T. cervi isolates between adjacent herds of farmed and wild white-tailed deer, although a divergent genotype X was identified. Chronic infection with T. cervi had no significant effects on mortality in the white-tailed deer. Conclusions We found significantly lower prevalence of T. cervi infection in farmed (40%) compared to wild white-tailed deer (98%), which may be due to the inclusion of chemical vector control strategies. More work is needed to determine the implications, if any, of mixed genotypic infections of T. cervi, although we found no significant effect of infection with Theileria on mortality in farmed deer. Theileria infection does sometimes cause disease when an animal is stressed, immunosuppressed, or translocated from non-endemic to endemic regions.
Collapse
Affiliation(s)
- Allison Cauvin
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Karen Hood
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Rebecca Shuman
- Florida Fish and Wildlife Conservation Commission, Gainesville, FL, USA
| | - Jeremy Orange
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
| | - Jason K Blackburn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Katherine A Sayler
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Samantha M Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Abstract
A wide array of vertebrates can serve as the intermediate hosts to malaria parasites (Apicomplexa: Haemosporida), such as birds, lizards, and several groups of mammals, including primates, bats, rodents, and ungulates. The latter group of hosts has not been intensively studied since early descriptions of a small set of taxa were published, but new reports of these parasites in both expected and new hosts have recently been published. A wide array of vertebrates can serve as the intermediate hosts to malaria parasites (Apicomplexa: Haemosporida), such as birds, lizards, and several groups of mammals, including primates, bats, rodents, and ungulates. The latter group of hosts has not been intensively studied since early descriptions of a small set of taxa were published, but new reports of these parasites in both expected and new hosts have recently been published. A new paper reports the presence of Plasmodium odocoilei in farmed white-tailed deer in Florida, particularly in animals less than 1 year old, and provides evidence that the parasites may contribute to mortality in fawns. That paper opens new opportunities to study the malaria parasite-mammal interface in North America.
Collapse
|