1
|
Yang F, Li M, Wu H, Yu C, Liu W, Chen H. Comparative genomics-based insights into Pantoea ananatis strains, isolated from white spot diseased leaves of maize with plant growth-promoting attributes. Appl Environ Microbiol 2025:e0032925. [PMID: 40387325 DOI: 10.1128/aem.00329-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/13/2025] [Indexed: 05/20/2025] Open
Abstract
Pantoea ananatis is a member of the Enterobacteriaceae family known for its broad host adaptability. This study isolated 10 P. ananatis strains from white spot (MWS)-diseased leaves of maize (Zea mays) grown in Yunnan Province, China, and analyzed their putative functions, genomic diversity, and variation. The inoculation tests revealed that none of the 10 isolates caused MWS symptoms in maize. Nine maize isolates, except for S47, induced a hypersensitive response (HR) in tobacco and caused rot symptoms in onion. Most isolates exhibited plant growth-promoting characteristics, with strains JCC14, JCY1, and S47 significantly enhancing maize seedling growth parameters. Genomic sequencing of 10 maize isolates and two rice isolates revealed that 12 isolates clustered into three groups, with an open pan-genome identified. Ancestral reconstruction indicated that the genome size increased in Group A and then decreased in Group B, with significant gains in orthologous groups at Node 14, the most recent common ancestor (MRCA) of Group A and Group B, and at Node 19, the MRCA of seven maize-isolated strains and other Group B strains. Additionally, 11 single-copy orthologous groups were under positive selection. Furthermore, the HIVir (high virulence, also known as PASVIL, P. ananatis-specific virulence locus) cluster and type VI secretion system-related genes were conserved in certain P. ananatis strains but were not related to their group divergences. This study not only reveals the diverse functions of MWS-diseased maize P. ananatis isolates, but also enhances our understanding of divergent genome evolution and environmental adaptation across P. ananatis species.IMPORTANCEPantoea ananatis is a bacterium commonly found in various agronomic crops. Maize white spot (MWS) has been one of the most destructive diseases affecting maize, leading to significant economic losses. This study clarified that P. ananatis strains colonized maize leaves but were not the causal agents of MWS in Yunnan Province, China. Moreover, most of these P. ananatis strains exhibited plant growth-promoting (PGP) activities, induced hypersensitive response (HR) activity on tobacco, and caused rot symptoms in onion. Notably, the analysis of divergence throughout the evolutionary process revealed significant genomic evolution and environmental adaptation in these P. ananatis strains. This highlights the genetic exchange that has shaped the genome of P. ananatis. These findings improve our understanding of the functional diversity of P. ananatis strains across different hosts and their positions within the evolutionary lineages of P. ananatis species.
Collapse
Affiliation(s)
- Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Miao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Kumar U, Pushpavanam S. A generalized model for predicting different morphologies of bacterial swarming on a porous solid surface. SOFT MATTER 2025; 21:226-240. [PMID: 39655366 DOI: 10.1039/d4sm01072h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In this study, we develop a comprehensive two-phase model to analyze the dynamics of bacterial swarming on porous substrates. The two distinct phases under consideration are the cell and aqueous phases. We use the thin-film approximation, as the characteristic height of the swarm is significantly lower than its characteristic radius. Our model incorporates surfactant generation by microorganisms, drag forces between the cell and aqueous phases, osmotic influx, and Marangoni stresses. The disjoining pressure is included to account for substrate wettability, and a precursor film is used to address the contact line singularity. Several morphologies of bacterial swarms, such as arrested, circular, modulated, branching, droplet, fingering, and dendrite, have been observed experimentally. The model developed is capable of predicting all these shapes for realistic parameter values. An increase in the wettability of the substrate leads to faster expansion, while increased surface tension helps redistribute biomass radially. The role of biomass growth and surfactant production rate, surfactant diffusivity, and osmotic influx on the morphology of bacterial swarms are explained.
Collapse
Affiliation(s)
- Uttam Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| | - Subramaniam Pushpavanam
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
| |
Collapse
|
3
|
NandaKafle G, Blasius LA, Seale T, Brözel VS. Escherichia coli Strains Display Varying Susceptibility to Grazing by the Soil Amoeba Dictyostelium discoideum. Microorganisms 2023; 11:1457. [PMID: 37374960 DOI: 10.3390/microorganisms11061457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Recent studies have shown that Escherichia coli can survive in different environments, including soils, and they can maintain populations in sterile soil for a long period of time. This indicates that growth-supporting nutrients are available; however, when grown in non-sterile soils, populations decline, suggesting that other biological factors play a role in controlling E. coli populations in soil. Free-living protozoa can affect the bacterial population by grazing. We hypothesized that E. coli strains capable of surviving in non-sterile soil possess mechanisms to protect themselves from amoeba predation. We determined the grazing rate of E. coli pasture isolates by using Dictyostelium discoideum. Bacterial suspensions applied to lactose agar as lines were allowed to grow for 24 h, when 4 μL of D. discoideum culture was inoculated in the center of each bacterial line. Grazing distances were measured after 4 days. The genomes of five grazing-susceptible and five grazing-resistant isolates were sequenced and compared. Grazing distance varied among isolates, which indicated that some E. coli are more susceptible to grazing by protozoa than others. When presented with a choice between grazing-susceptible and grazing-resistant isolates, D. discoideum grazed only on the susceptible strain. Grazing susceptibility phenotype did not align with the phylogroup, with both B1 and E strains found in both grazing groups. They also did not align by core genome phylogeny. Whole genome comparisons revealed that the five most highly grazed strains had 389 shared genes not found in the five least grazed strains. Conversely, the five least grazed strains shared 130 unique genes. The results indicate that long-term persistence of E. coli in soil is due at least in part to resistance to grazing by soil amoeba.
Collapse
Affiliation(s)
- Gitanjali NandaKafle
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Lane A Blasius
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
| | - Tarren Seale
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| | - Volker S Brözel
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0004, South Africa
| |
Collapse
|
4
|
Lv L, Luo J, Ahmed T, Zaki HEM, Tian Y, Shahid MS, Chen J, Li B. Beneficial Effect and Potential Risk of Pantoea on Rice Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:2608. [PMID: 36235474 PMCID: PMC9570785 DOI: 10.3390/plants11192608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/26/2023]
Abstract
Bacteria from the genus Pantoea have been reported to be widely distributed in rice paddy environments with contradictory roles. Some strains promoted rice growth and protected rice from pathogen infection or abiotic stress, but other strain exhibited virulence to rice, even causing severe rice disease. In order to effectively utilize Pantoea in rice production, this paper analyzed the mechanisms underlying beneficial and harmful effects of Pantoea on rice growth. The beneficial effect of Pantoea on rice plants includes growth promotion, abiotic alleviation and disease inhibition. The growth promotion may be mainly attributed to nitrogen-fixation, phosphate solubilization, plant physiological change, the biosynthesis of siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylic acid deaminase and phytohormones, including cytokinin, indole-3-acetic acid (IAA), auxins, abscisic acid and gibberellic acid, while the disease inhibition may be mainly due to the induced resistance, nutrient and spatial competition, as well as the production of a variety of antibiotics. The pathogenic mechanism of Pantoea can be mainly attributed to bacterial motility, production of phytohormones such as IAA, quorum sensing-related signal molecules and a series of cell wall-degrading enzymes, while the pathogenicity-related genes of Pantoea include genes encoding plasmids, such as the pPATH plasmid, the hypersensitive response and pathogenicity system, as well as various types of secretion systems, such as T3SS and T6SS. In addition, the existing scientific problems in this field were discussed and future research prospects were proposed.
Collapse
Affiliation(s)
- Luqiong Lv
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Ye Tian
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of ZhejiangProvince, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Itkina DL, Suleimanova AD, Sharipova MR. Isolation, Purification, and Identification of the Secretion Compound Pantoea brenneri AS3 with Fungicidal Activity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s000368382204007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
A comprehensive review on natural occurrence, synthesis and biological activities of glycolipids. Carbohydr Res 2022; 516:108556. [DOI: 10.1016/j.carres.2022.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 01/10/2023]
|
7
|
Identification of putative producers of rhamnolipids/glycolipids and their transporters using genome mining. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. BIORESOURCE TECHNOLOGY 2021; 330:124963. [PMID: 33744735 DOI: 10.1016/j.biortech.2021.124963] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 05/05/2023]
Abstract
Microbial surfactants are a large number of amphipathic biomolecules with a myriad of biomolecule constituents from various microbial sources that have been studied for their surface tension reduction activities. With unique properties, their applications have been increased in different areas including environment, medicine, healthcare, agriculture and industries. The present review aims to study the biochemistry and biosynthesis of biosurfactants exhibiting varying biomolecular structures which are produced by different microbial sources. It also provides details on roles played by biosurfactants in nature as well as their potential applications in various sectors. Basic biomolecule content of all the biosurfactants studied showed presence of carbohydrates, aminoacids, lipids and fattyacids. The data presented here would help in designing, synthesis and application of tailor-made novel biosurfactants. This would pave a way for perspectives of research on biosurfactants to overcome the existing bottlenecks in this field.
Collapse
Affiliation(s)
- Anoop R Markande
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa - 388 421, Anand, Gujarat, India
| | - Divya Patel
- Multi-disciplinary Research Unit, Surat Municipal Institute of Medical Education & Research, Surat 395010, Gujarat, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| |
Collapse
|
9
|
Cloutier M, Prévost MJ, Lavoie S, Feroldi T, Piochon M, Groleau MC, Legault J, Villaume S, Crouzet J, Dorey S, Dìaz De Rienzo MA, Déziel E, Gauthier C. Total synthesis, isolation, surfactant properties, and biological evaluation of ananatosides and related macrodilactone-containing rhamnolipids. Chem Sci 2021; 12:7533-7546. [PMID: 34163844 PMCID: PMC8171317 DOI: 10.1039/d1sc01146d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/22/2021] [Indexed: 01/20/2023] Open
Abstract
Rhamnolipids are a specific class of microbial surfactants, which hold great biotechnological and therapeutic potential. However, their exploitation at the industrial level is hampered because they are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa. The non-human pathogenic bacterium Pantoea ananatis is an alternative producer of rhamnolipid-like metabolites containing glucose instead of rhamnose residues. Herein, we present the isolation, structural characterization, and total synthesis of ananatoside A, a 15-membered macrodilactone-containing glucolipid, and ananatoside B, its open-chain congener, from organic extracts of P. ananatis. Ananatoside A was synthesized through three alternative pathways involving either an intramolecular glycosylation, a chemical macrolactonization or a direct enzymatic transformation from ananatoside B. A series of diasteroisomerically pure (1→2), (1→3), and (1→4)-macrolactonized rhamnolipids were also synthesized through intramolecular glycosylation and their anomeric configurations as well as ring conformations were solved using molecular modeling in tandem with NMR studies. We show that ananatoside B is a more potent surfactant than its macrolide counterpart. We present evidence that macrolactonization of rhamnolipids enhances their cytotoxic and hemolytic potential, pointing towards a mechanism involving the formation of pores into the lipidic cell membrane. Lastly, we demonstrate that ananatoside A and ananatoside B as well as synthetic macrolactonized rhamnolipids can be perceived by the plant immune system, and that this sensing is more pronounced for a macrolide featuring a rhamnose moiety in its native 1 C 4 conformation. Altogether our results suggest that macrolactonization of glycolipids can dramatically interfere with their surfactant properties and biological activity.
Collapse
Affiliation(s)
- Maude Cloutier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Marie-Joëlle Prévost
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Serge Lavoie
- Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi 555, Boulevard de l'Université Chicoutimi (Québec) G7H 2B1 Canada
| | - Thomas Feroldi
- Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi 555, Boulevard de l'Université Chicoutimi (Québec) G7H 2B1 Canada
| | - Marianne Piochon
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Jean Legault
- Laboratoire d'Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi 555, Boulevard de l'Université Chicoutimi (Québec) G7H 2B1 Canada
| | - Sandra Villaume
- Université de Reims Champagne-Ardenne, INRAE, USC RIBP 1488, SFR Condorcet-FR CNRS 3417 51100 Reims France
| | - Jérôme Crouzet
- Université de Reims Champagne-Ardenne, INRAE, USC RIBP 1488, SFR Condorcet-FR CNRS 3417 51100 Reims France
| | - Stéphan Dorey
- Université de Reims Champagne-Ardenne, INRAE, USC RIBP 1488, SFR Condorcet-FR CNRS 3417 51100 Reims France
| | - Mayri Alejandra Dìaz De Rienzo
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University L3 3AF Liverpool UK
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS) 531, Boulevard des Prairies Laval (Québec) H7V 1B7 Canada
| |
Collapse
|
10
|
Twigg MS, Baccile N, Banat IM, Déziel E, Marchant R, Roelants S, Van Bogaert INA. Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb Biotechnol 2021; 14:147-170. [PMID: 33249753 PMCID: PMC7888453 DOI: 10.1111/1751-7915.13704] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
The demand for microbially produced surface-active compounds for use in industrial processes and products is increasing. As such, there has been a comparable increase in the number of publications relating to the characterization of novel surface-active compounds: novel producers of already characterized surface-active compounds and production processes for the generation of these compounds. Leading researchers in the field have identified that many of these studies utilize techniques are not precise and accurate enough, so some published conclusions might not be justified. Such studies lacking robust experimental evidence generated by validated techniques and standard operating procedures are detrimental to the field of microbially produced surface-active compound research. In this publication, we have critically reviewed a wide range of techniques utilized in the characterization of surface-active compounds from microbial sources: identification of surface-active compound producing microorganisms and functional testing of resultant surface-active compounds. We have also reviewed the experimental evidence required for process development to take these compounds out of the laboratory and into industrial application. We devised this review as a guide to both researchers and the peer-reviewed process to improve the stringency of future studies and publications within this field of science.
Collapse
Affiliation(s)
- Matthew Simon Twigg
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Niki Baccile
- Centre National de la Recherche ScientifiqueLaboratoire de Chimie de la Matière Condensée de ParisSorbonne UniversitéLCMCPParisF‐75005France
| | - Ibrahim M. Banat
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Eric Déziel
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)531, Boul. Des PrairiesLavalQCH7V 1B7Canada
| | - Roger Marchant
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Sophie Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Bio Base Europe Pilot PlantRodenhuizenkaai 1Ghent9042Belgium
| | - Inge N. A. Van Bogaert
- Centre for Synthetic BiologyDepartment of BiotechnologyGhent UniversityCoupure Links 653Ghent9000Belgium
| |
Collapse
|
11
|
Islam ST, Vergara Alvarez I, Saïdi F, Guiseppi A, Vinogradov E, Sharma G, Espinosa L, Morrone C, Brasseur G, Guillemot JF, Benarouche A, Bridot JL, Ravicoularamin G, Cagna A, Gauthier C, Singer M, Fierobe HP, Mignot T, Mauriello EMF. Modulation of bacterial multicellularity via spatio-specific polysaccharide secretion. PLoS Biol 2020; 18:e3000728. [PMID: 32516311 PMCID: PMC7310880 DOI: 10.1371/journal.pbio.3000728] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/23/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022] Open
Abstract
The development of multicellularity is a key evolutionary transition allowing for differentiation of physiological functions across a cell population that confers survival benefits; among unicellular bacteria, this can lead to complex developmental behaviors and the formation of higher-order community structures. Herein, we demonstrate that in the social δ-proteobacterium Myxococcus xanthus, the secretion of a novel biosurfactant polysaccharide (BPS) is spatially modulated within communities, mediating swarm migration as well as the formation of multicellular swarm biofilms and fruiting bodies. BPS is a type IV pilus (T4P)-inhibited acidic polymer built of randomly acetylated β-linked tetrasaccharide repeats. Both BPS and exopolysaccharide (EPS) are produced by dedicated Wzx/Wzy-dependent polysaccharide-assembly pathways distinct from that responsible for spore-coat assembly. While EPS is preferentially produced at the lower-density swarm periphery, BPS production is favored in the higher-density swarm interior; this is consistent with the former being known to stimulate T4P retraction needed for community expansion and a function for the latter in promoting initial cell dispersal. Together, these data reveal the central role of secreted polysaccharides in the intricate behaviors coordinating bacterial multicellularity. A study of the social bacterium Myxococcus xanthus reveals that the bacteria preferentially secrete specific polysaccharides within distinct zones of a swarm to facilitate spreading across a surface.
Collapse
Affiliation(s)
- Salim T. Islam
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Québec, Canada
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail: (STI); (EMFM)
| | - Israel Vergara Alvarez
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Fares Saïdi
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Québec, Canada
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Annick Guiseppi
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Evgeny Vinogradov
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California–Davis, Davis, California, United States of America
- Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru, Karnataka, India
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Castrese Morrone
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Gael Brasseur
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | | | | | - Gokulakrishnan Ravicoularamin
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
| | - Alain Cagna
- Teclis Scientific, Civrieux d’Azergue, France
| | - Charles Gauthier
- Armand Frappier Health & Biotechnology Research Centre, Institut National de la Recherche Scientifique, Université du Québec, Institut Pasteur International Network, Laval, Québec, Canada
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California–Davis, Davis, California, United States of America
| | - Henri-Pierre Fierobe
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emilia M. F. Mauriello
- Laboratoire de Chimie Bactérienne, CNRS–Université Aix-Marseille UMR, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail: (STI); (EMFM)
| |
Collapse
|
12
|
Exploiting the Natural Diversity of RhlA Acyltransferases for the Synthesis of the Rhamnolipid Precursor 3-(3-Hydroxyalkanoyloxy)Alkanoic Acid. Appl Environ Microbiol 2020; 86:AEM.02317-19. [PMID: 31924623 PMCID: PMC7054101 DOI: 10.1128/aem.02317-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
While rhamnolipids of the Pseudomonas aeruginosa type are commercially available, the natural diversity of rhamnolipids and their origin have barely been investigated. Here, we collected known and identified new rhlA genes encoding the acyltransferase responsible for the synthesis of the lipophilic rhamnolipid precursor 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA). Generally, all homologs were found in Betaproteobacteria and Gammaproteobacteria A likely horizontal gene transfer event into Actinobacteria is the only identified exception. The phylogeny of the RhlA homologs from Pseudomonas and Burkholderia species is consistent with the organism phylogeny, and genes involved in rhamnolipid synthesis are located in operons. In contrast, RhlA homologs from the Enterobacterales do not follow the organisms' phylogeny but form their own branch. Furthermore, in many Enterobacterales and Halomonas from the Oceanospirillales, an isolated rhlA homolog can be found in the genome. The RhlAs from Pseudomonas aeruginosa PA01, Pseudomonas fluorescens LMG 05825, Pantoea ananatis LMG 20103, Burkholderia plantarii PG1, Burkholderia ambifaria LMG 19182, Halomonas sp. strain R57-5, Dickeya dadantii Ech586, and Serratia plymuthica PRI-2C were expressed in Escherichia coli and tested for HAA production. Indeed, except for the Serratia RhlA, HAAs were produced with the engineered strains. A detailed analysis of the produced HAA congeners by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) highlights the congener specificity of the RhlA proteins. The congener length varies from 4 to 18 carbon atoms, with the main congeners consisting of different combinations of saturated or monounsaturated C10, C12, and C14 fatty acids. The results are discussed in the context of the phylogeny of this unusual enzymatic activity.IMPORTANCE The RhlA specificity explains the observed differences in 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA) congeners. Whole-cell catalysts can now be designed for the synthesis of different congener mixtures of HAAs and rhamnolipids, thereby contributing to the envisaged synthesis of designer HAAs.
Collapse
|
13
|
McDougall DL, Soutar CD, Perry BJ, Brown C, Alexander D, Yost CK, Stavrinides J. Isolation and Characterization of vB_PagP-SK1, a T7-Like Phage Infecting Pantoea agglomerans. ACTA ACUST UNITED AC 2020; 1:45-56. [DOI: 10.1089/phage.2019.0012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Craig D. Soutar
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Benjamin J. Perry
- Department of Microbiology and Immunology, University of Otago, North Dunedin, New Zealand
| | - Cheryl Brown
- Roy Romanow Provincial Laboratory, Regina, Saskatchewan, Canada
| | | | | | - John Stavrinides
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
14
|
Williams AN, Stavrinides J. Pantoea Natural Product 3 is encoded by an eight-gene biosynthetic gene cluster and exhibits antimicrobial activity against multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microbiol Res 2020; 234:126412. [PMID: 32062363 DOI: 10.1016/j.micres.2020.126412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
Abstract
Multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa continue to pose a serious health threat worldwide. Two Pantoea agglomerans strains, 3581 and SN01080, produce an antibiotic effective against these pathogens. To identify the antibiotic biosynthetic gene clusters, independent genetic screens were conducted for each strain using a mini-Tn5 transposon, which resulted in the identification of the same conserved eight-gene cluster. We have named this antibiotic Pantoea Natural Product 3 (PNP-3). The PNP-3 biosynthetic cluster is composed of genes encoding two Major Facilitator Superfamily (MFS) transporters, an ArsR family regulator, and five predicted enzymes. The biosynthetic gene cluster is found in only a few Pantoea strains and is not present within the antiSMASH and BAGEL4 databases, suggesting it may be novel. In strain 3581, PNP-3 production is linked to pantocin A production, where loss of pantocin A production results in a larger PNP-3 zone of inhibition. To evaluate the spectrum of activity, PNP-3 producers, including several PNP-3 mutants and pantocin A site-directed mutants, were tested against a collection of clinical, drug-resistant strains of A. baumannii and P. aeruginosa, as well as, Klebsiella, Escherichia coli, Enterobacter, Staphylococcus aureus, and Streptococcus mutans. PNP-3 was found to be effective against all strains except vancomycin-resistant Enterococcus under the tested conditions. Heterologous expression of the four predicted biosynthetic genes in Erwinia amylovora resulted in antibiotic production, providing a means for future overexpression and purification. PNP-3 is a natural product that is effective against drug-resistant A. baumannii, P. aeruginosa, and enteric species for which there are currently few treatment options.
Collapse
Affiliation(s)
- Ashley N Williams
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada.
| |
Collapse
|
15
|
Soutar CD, Stavrinides J. Molecular validation of clinical Pantoea isolates identified by MALDI-TOF. PLoS One 2019; 14:e0224731. [PMID: 31682625 PMCID: PMC6827907 DOI: 10.1371/journal.pone.0224731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/20/2019] [Indexed: 12/13/2022] Open
Abstract
The Enterobacterial genus Pantoea contains both free-living and host-associating species, with considerable debate as to whether documented reports of human infections by members of this species group are accurate. MALDI-TOF-based identification methods are commonly used in clinical laboratories as a rapid means of identification, but its reliability for identification of Pantoea species is unclear. In this study, we carried out cpn60-based molecular typing of 54 clinical isolates that had been identified as Pantoea using MALDI-TOF and other clinical typing methods. We found that 24% had been misidentified, and were actually strains of Citrobacter, Enterobacter, Kosakonia, Klebsiella, Pseudocitrobacter, members of the newly described Erwinia gerundensis, and even several unclassified members of the Enterobacteriaceae. The 40 clinical strains that were confirmed to be Pantoea were identified as Pantoea agglomerans, Pantoea allii, Pantoea dispersa, Pantoea eucalypti, and Pantoea septica as well as the proposed species group, Pantoea latae. Some species groups considered largely environmental or plant-associated, such as P. allii and P. eucalypti were also among clinical specimens. Our results indicate that MALDI-TOF-based identification methods may misidentify strains of the Enterobacteriaceae as Pantoea.
Collapse
Affiliation(s)
- Craig D. Soutar
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
16
|
Resistance to Two Vinylglycine Antibiotic Analogs Is Conferred by Inactivation of Two Separate Amino Acid Transporters in Erwinia amylovora. J Bacteriol 2019; 201:JB.00658-18. [PMID: 30745372 DOI: 10.1128/jb.00658-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora is the causal agent of fire blight of apple and pear trees. Several bacteria have been shown to produce antibiotics that antagonize E. amylovora, including pantocins, herbicolins, dapdiamides, and the vinylglycines, 4-formylaminooxyvinylglycine (FVG) and 4-aminoethoxyvinylglycine (AVG). Pantoea ananatis BRT175 was previously shown to exhibit antibiotic activity against E. amylovora via the production of Pantoea natural product 1 (PNP-1), later shown to be FVG; however, exposure of E. amylovora to FVG results in spontaneously resistant mutants. To identify the mechanism of resistance, we used genome variant analysis on spontaneous FVG-resistant mutants of E. amylovora and identified null mutations in the l-asparagine permease gene ansP Heterologous expression of ansP in normally resistant Escherichia coli was sufficient to impart FVG susceptibility, suggesting that FVG is imported through this permease. Because FVG and AVG are structurally similar, we hypothesized that resistance to AVG would also be conferred through inactivation of ansP; however, ansP mutants were not resistant to AVG. We found that spontaneously resistant Ea321 mutants also arise in the presence of AVG, with whole-genome variant analysis revealing that resistance was due to inactivation of the arginine ABC transporter permease subunit gene artQ Heterologous expression of the predicted lysE-like transporter encoded within the Pantoea ananatis BRT175 FVG biosynthetic cluster, which is likely responsible for antibiotic export, was sufficient to confer resistance to both FVG and AVG. This work highlights the important roles of amino acid transporters in antibiotic import into bacteria and the potential utility of antimicrobial amino acid analogs as antibiotics.IMPORTANCE The related antibiotics formylaminooxyvinylglycine (FVG) and aminoethoxyvinylglycine (AVG) have been shown to have activity against the fire blight pathogen Erwinia amylovora; however, E. amylovora can develop spontaneous resistance to these antibiotics. By comparing the genomes of mutants to those of the wild type, we found that inactivation of the l-asparagine transporter conferred resistance to FVG, while inactivation of the l-arginine transporter conferred resistance to AVG. We also show that the transporter encoded by the FVG biosynthetic cluster can confer resistance to both FVG and AVG. Our work indicates the important role that amino acid transporters play in the import of antibiotics and highlights the possible utility in designer antibiotics that enter the bacterial cell through amino acid transporters.
Collapse
|
17
|
Gauthier C, Lavoie S, Piochon M, Martinez S, Milot S, Déziel E. Structural determination of ananatoside A: An unprecedented 15-membered macrodilactone-containing glycolipid from Pantoea ananatis. Carbohydr Res 2018; 471:13-18. [PMID: 30408718 DOI: 10.1016/j.carres.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/15/2022]
Abstract
The bacterium Pantoea ananatis was reported to produce glycolipid biosurfactants of unknown structures. Herein, we present the isolation and structural determination of ananatoside A, the main congener of a new family of 15-membered macrodilactone-containing glucolipids. The structure of ananatoside A was elucidated via chemical degradation and spectroscopic methods including 1D/2D NMR analysis, tandem MS/MS, GC-MS, HR-ESI-TOF-MS, MALDI-TOF-MS, and polarimetry. Computational methods were used to predict the most abundant conformers of ananatoside A.
Collapse
Affiliation(s)
- Charles Gauthier
- INRS - Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Serge Lavoie
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, 58, rue Principale, Ripon, Québec, J0V 1V0, Canada
| | - Marianne Piochon
- INRS - Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Sarah Martinez
- INRS - Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Sylvain Milot
- INRS - Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Eric Déziel
- INRS - Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
18
|
Soutar CD, Stavrinides J. The evolution of three siderophore biosynthetic clusters in environmental and host-associating strains of Pantoea. Mol Genet Genomics 2018; 293:1453-1467. [PMID: 30027301 DOI: 10.1007/s00438-018-1477-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022]
Abstract
For many pathogenic members of the Enterobacterales, siderophores play an important role in virulence, yet the siderophores of the host-associating members of the genus Pantoea remain unexplored. We conducted a genome-wide survey of environmental and host-associating strains of Pantoea to identify known and candidate siderophore biosynthetic clusters. Our analysis identified three clusters homologous to those of enterobactin, desferrioxamine, and aerobactin that were prevalent among Pantoea species. Using both phylogenetic and comparative genomic approaches, we demonstrate that the enterobactin-like cluster was present in the common ancestor of all Pantoea, with evidence for three independent losses of the cluster in P. eucalypti, P. eucrina, and the P. ananatis-P. stewartii lineage. The desferrioxamine biosynthetic cluster, previously described and characterized in Pantoea, was horizontally acquired from its close relative Erwinia, with phylogenetic evidence that these transfer events were ancient and occurred between ancestral lineages. The aerobactin cluster was identified in three host-associating species groups, P. septica, P. ananatis, and P. stewartii, with strong evidence for horizontal acquisition from human-pathogenic members of the Enterobacterales. Our work identifies and describes the key siderophore clusters in Pantoea, shows three distinct evolutionary processes driving their diversification, and provides a foundation for exploring the roles that these siderophores may play in human opportunistic infections.
Collapse
Affiliation(s)
- Craig D Soutar
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S0A2, Canada.
| |
Collapse
|
19
|
Pizzolante G, Durante M, Rizzo D, Di Salvo M, Tredici SM, Tufariello M, De Paolis A, Talà A, Mita G, Alifano P, De Benedetto GE. Characterization of two Pantoea strains isolated from extra-virgin olive oil. AMB Express 2018; 8:113. [PMID: 29992518 PMCID: PMC6039349 DOI: 10.1186/s13568-018-0642-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/05/2018] [Indexed: 11/10/2022] Open
Abstract
The olive oil is an unfavorable substrate for microbial survival and growth. Only few microorganisms use olive oil fatty acids as carbon and energy sources, and survive in the presence of olive oil anti-microbial components. In this study, we have evaluated the occurrence of microorganisms in 1-year-stored extra-virgin olive oil samples. We detected the presence of bacterial and yeast species with a recurrence of the bacterium Stenotrophomonas rhizophila and yeast Sporobolomyces roseus. We then assayed the ability of all isolates to grow in a mineral medium supplemented with a commercial extra-virgin olive oil as a sole carbon and energy source, and analyzed the utilization of olive oil fatty acids during their growth. We finally focused on two bacterial isolates belonging to the species Pantoea septica. Both these isolates produce carotenoids, and one of them synthesizes bioemulsifiers enabling the bacteria to better survive/growth in this unfavorable substrate. Analyses point to a mixture of glycolipids with glucose, galactose and xylose as carbohydrate moieties whereas the lipid domain was constituted by C6-C10 β-hydroxy carboxylic acids.
Collapse
Affiliation(s)
- Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Miriana Durante
- Istituto di Scienze Delle Produzioni Alimentari-CNR, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Daniela Rizzo
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Marco Di Salvo
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Salvatore Maurizio Tredici
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Maria Tufariello
- Istituto di Scienze Delle Produzioni Alimentari-CNR, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Angelo De Paolis
- Istituto di Scienze Delle Produzioni Alimentari-CNR, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Giovanni Mita
- Istituto di Scienze Delle Produzioni Alimentari-CNR, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy
| | - Giuseppe Egidio De Benedetto
- Laboratory of Analytical and Isotopic Mass Spectrometry, Department of Cultural Heritage, University of Salento, Lecce, Italy
| |
Collapse
|
20
|
Weller‐Stuart T, De Maayer P, Coutinho T. Pantoea ananatis: genomic insights into a versatile pathogen. MOLECULAR PLANT PATHOLOGY 2017; 18:1191-1198. [PMID: 27880983 PMCID: PMC6638271 DOI: 10.1111/mpp.12517] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pantoea ananatis, a bacterium that is well known for its phytopathogenic characteristics, has been isolated from a myriad of ecological niches and hosts. Infection of agronomic crops, such as maize and rice, can result in substantial economic losses. In the last few years, much of the research performed on P. ananatis has been based on the sequencing and analysis of the genomes of strains isolated from different environments and with different lifestyles. In this review, we summarize the advances made in terms of pathogenicity determinants of phytopathogenic strains of P. ananatis and how this bacterium is able to adapt and survive in such a wide variety of habitats. The diversity and adaptability of P. ananatis can largely be attributed to the plasticity of its genome and the integration of mobile genetic elements on both the chromosome and plasmid. Furthermore, we discuss the recent interest in this species in various biotechnological applications. TAXONOMY Domain Bacteria; Class Gammaproteobacteria; Family Enterobacteriaceae; genus Pantoea; species ananatis. DISEASE SYMPTOMS Pantoea ananatis causes disease on a wide range of plants, and symptoms can range from dieback and stunted growth in Eucalyptus seedlings to chlorosis and bulb rotting in onions. DISEASE CONTROL Currently, the only methods of control of P. ananatis on most plant hosts are the use of resistant clones and cultivars or the eradication of infected plant material. The use of lytic bacteriophages on certain host plants, such as rice, has also achieved a measure of success.
Collapse
Affiliation(s)
- Tania Weller‐Stuart
- Forestry and Agricultural Biotechnology Institute (FABI), Department of MicrobiologyUniversity of PretoriaPretoria0002South Africa
| | - Pieter De Maayer
- School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburg2050South Africa
| | - Teresa Coutinho
- Forestry and Agricultural Biotechnology Institute (FABI), Department of MicrobiologyUniversity of PretoriaPretoria0002South Africa
| |
Collapse
|