1
|
Chen G, Tian G, Hu J, Qin C, Zou X, Cai J, Lv G, Gao W, Seeberger PH, Yin J. Chemical synthesis elucidates the absolute configuration and key antigenic epitope of Vibrio cholerae serotype O100 O-antigen. SCIENCE ADVANCES 2025; 11:eadv0571. [PMID: 40279410 PMCID: PMC12024518 DOI: 10.1126/sciadv.adv0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/24/2025] [Indexed: 04/27/2025]
Abstract
The emergence of drug-resistant strains of Vibrio cholerae, coupled with the current limitations of oral vaccines, underscores the urgent need for the development of new vaccines. The O-antigen of V. cholerae serotype O100 has emerged as a promising candidate for vaccine development. To investigate the absolute configuration of 3,5-dihydroxyhexanoyl (dHh) and to evaluate the structure-activity relationship of the O-antigen trisaccharide repeating unit, we completed total synthesis of four potential trisaccharide isomers, along with 11 additional oligosaccharide fragments of the O-antigen. Stereoselective reduction was used for the synthesis of dHh, and the efficient assembly of dHh and (R)-3-hydroxybutanoyl (RHb) was achieved through a post-glycosylation modification strategy. Through NMR analysis, the absolute configuration of dHh was assigned 3S,5S. Glycan microarray screening indicated that RHb is essential for the antigenicity of O-antigen. The nonreducing end disaccharide 59 may serve as the minimal antigenic epitope. These findings are an important step toward the design of semi-synthetic carbohydrate vaccines against V. cholerae.
Collapse
Affiliation(s)
- Guodong Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Guangzong Tian
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
- Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Jing Hu
- Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, P.R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, P.R. China
| | - Chunjun Qin
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
- Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Xiaopeng Zou
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
- Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Juntao Cai
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
| | - Guochao Lv
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
- Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Weixin Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
- Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Peter H. Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Jian Yin
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, P.R. China
- Innovation Center for Vaccine Engineering, Jiangnan University, Wuxi 214122, P.R. China
| |
Collapse
|
2
|
Kaisar MH, Kelly M, Kamruzzaman M, Bhuiyan TR, Chowdhury F, Khan AI, LaRocque RC, Calderwood SB, Harris JB, Charles RC, Čížová A, Mečárová J, Korcová J, Bystrický S, Kováč P, Xu P, Qadri F, Ryan ET. Comparison of O-specific polysaccharide responses in patients following infection with Vibrio cholerae O139 versus vaccination with a bivalent (O1/O139) oral killed cholera vaccine in Bangladesh. mSphere 2023; 8:e0025523. [PMID: 37646517 PMCID: PMC10597347 DOI: 10.1128/msphere.00255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 09/01/2023] Open
Abstract
Cholera caused by Vibrio cholerae O139 emerged in the early 1990s and spread rapidly to 11 Asian countries before receding for unclear reasons. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). V. cholerae O139 also expresses the OSP-capsule. We, therefore, assessed antibody responses targeting V. cholerae O139 OSP, LPS, capsule, and vibriocidal responses in patients in Bangladesh with cholera caused by V. cholerae O139. We compared these responses to those of age-gender-blood group-matched recipients of the bivalent oral cholera vaccine (OCV O1/O139). We found prominent OSP, LPS, and vibriocidal responses in patients, with a high correlation between these responses. OSP responses primarily targeted the terminal tetrasaccharide of OSP. Vaccinees developed OSP, LPS, and vibriocidal antibody responses, but of significantly lower magnitude and responder frequency (RF) than matched patients. We separately analyzed responses in pediatric vaccinees born after V. cholerae O139 had receded in Bangladesh. We found that OSP responses were boosted in children who had previously received a single dose of bivalent OCV 3 yr previously but not in vaccinated immunologically naïve children. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 despite the presence of capsules, that vaccination with bivalent OCV is poorly immunogenic in the short term in immunologically naïve individuals, but that OSP-specific immune responses can be primed by previous exposure, although whether such responses can protect against O139 cholera is uncertain. IMPORTANCE Cholera is a severe dehydrating illness in humans caused by Vibrio cholerae serogroups O1 or O139. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) of V. cholerae LPS. Yet, little is known about immunity to O139 OSP. In this study, we assessed immune responses targeting OSP in patients from an endemic region with cholera caused by V. cholerae O139. We compared these responses to those of the age-gender-blood group-matched recipients of the bivalent oral cholera vaccine. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 and that the OSP responses primarily target the terminal tetrasaccharide of OSP. Our results further suggest that vaccination with the bivalent vaccine is poorly immunogenic in the short term for inducing O139-specific OSP responses in immunologically naïve individuals, but OSP-specific immune responses can be primed by previous exposure or vaccination.
Collapse
Affiliation(s)
- M. Hasanul Kaisar
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohammad Kamruzzaman
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Korcová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Peng Xu
- Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Jones FK, Bhuiyan TR, Muise RE, Khan AI, Slater DM, Hutt Vater KR, Chowdhury F, Kelly M, Xu P, Kováč P, Biswas R, Kamruzzaman M, Ryan ET, Calderwood SB, LaRocque RC, Lessler J, Charles RC, Leung DT, Qadri F, Harris JB, Azman AS. Identifying Recent Cholera Infections Using a Multiplex Bead Serological Assay. mBio 2022; 13:e0190022. [PMID: 36286520 PMCID: PMC9765614 DOI: 10.1128/mbio.01900-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Estimates of incidence based on medically attended cholera can be severely biased. Vibrio cholerae O1 leaves a lasting antibody signal and recent advances showed that these can be used to estimate infection incidence rates from cross-sectional serologic data. Current laboratory methods are resource intensive and challenging to standardize across laboratories. A multiplex bead assay (MBA) could efficiently expand the breadth of measured antibody responses and improve seroincidence accuracy. We tested 305 serum samples from confirmed cholera cases (4 to 1083 d postinfection) and uninfected contacts in Bangladesh using an MBA (IgG/IgA/IgM for 7 Vibrio cholerae O1-specific antigens) as well as traditional vibriocidal and enzyme-linked immunosorbent assays (2 antigens, IgG, and IgA). While postinfection vibriocidal responses were larger than other markers, several MBA-measured antibodies demonstrated robust responses with similar half-lives. Random forest models combining all MBA antibody measures allowed for accurate identification of recent cholera infections (e.g., past 200 days) including a cross-validated area under the curve (cvAUC200) of 92%, with simpler 3 IgG antibody models having similar accuracy. Across infection windows between 45 and 300 days, the accuracy of models trained on MBA measurements was non-inferior to models based on traditional assays. Our results illustrated a scalable cholera serosurveillance tool that can be incorporated into multipathogen serosurveillance platforms. IMPORTANCE Reliable estimates of cholera incidence are challenged by poor clinical surveillance and health-seeking behavior biases. We showed that cross-sectional serologic profiles measured with a high-throughput multiplex bead assay can lead to accurate identification of those infected with pandemic Vibrio cholerae O1, thus allowing for estimates of seroincidence. This provides a new avenue for understanding the epidemiology of cholera, identifying priority areas for cholera prevention/control investments, and tracking progress in the global fight against this ancient disease.
Collapse
Affiliation(s)
- Forrest K. Jones
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Taufiqur R. Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rachel E. Muise
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ashraful I. Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Damien M. Slater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kian Robert Hutt Vater
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajib Biswas
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- University of North Carolina Population Center, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Daniel T. Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Global Health, University of Geneva, Geneva, Switzerland
| |
Collapse
|