1
|
Robinson RE, Robertson JK, Moustafa DA, Goldberg JB. piv does not impact Pseudomonas aeruginosa virulence in Galleria mellonella. Microbiol Spectr 2025:e0281124. [PMID: 40396793 DOI: 10.1128/spectrum.02811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 03/28/2025] [Indexed: 05/22/2025] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that can also infect mammals, invertebrates, and plants. Protease IV (PIV) is a secreted protease shown to be important in mammalian cornea, lung, and wound models of infection. It also contributes to P. aeruginosa virulence in many invertebrate models. Previous studies have shown that the expression of the gene encoding PIV is higher at 25°C than at 37°C. Thus, we hypothesized that piv would be more important for P. aeruginosa virulence at 25°C than at 37°C. To test this, we first demonstrated that more PIV is secreted by P. aeruginosa PAO1 cells grown at 25°C than at 37°C. We then determined the survival of larvae of the greater wax moth Galleria mellonella infected by PAO1 and an isogenic Δpiv mutant at both 25°C and 37°C. We found no significant difference in virulence between PAO1 and Δpiv at either 25°C or 37°C, although both strains were more virulent at 37°C than 25°C as measured by a decrease in median survival time. P. aeruginosa possesses an arsenal of virulence factors besides PIV, and thus loss of this single virulence factor may not result in attenuation in the highly susceptible G. mellonella larvae.IMPORTANCEPathogenesis of the important opportunistic pathogen Pseudomonas aeruginosa is often investigated using model organisms. Larvae of the greater wax moth, Galleria mellonella, are a popular non-mammalian model organism for P. aeruginosa infections that have been used to study highly attenuated mutants and characterize their defects in virulence. Our study shows that small differences in the virulence of P. aeruginosa, such as those caused by deleting the gene encoding a single virulence factor, may not be detectable in the G. mellonella model of infection. This is an important finding for researchers considering the choice of model organisms for virulence studies.
Collapse
Affiliation(s)
- Rachel E Robinson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Dina A Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Jackson M, Vineberg S, Theis KR. The Epistemology of Bacterial Virulence Factor Characterization. Microorganisms 2024; 12:1272. [PMID: 39065041 PMCID: PMC11278562 DOI: 10.3390/microorganisms12071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The field of microbial pathogenesis seeks to identify the agents and mechanisms responsible for disease causation. Since Robert Koch introduced postulates that were used to guide the characterization of microbial pathogens, technological advances have substantially increased the capacity to rapidly identify a causative infectious agent. Research efforts currently focus on causation at the molecular level with a search for virulence factors (VFs) that contribute to different stages of the infectious process. We note that the quest to identify and characterize VFs sometimes lacks scientific rigor, and this suggests a need to examine the epistemology of VF characterization. We took this premise as an opportunity to explore the epistemology of VF characterization. In this perspective, we discuss how the characterization of various gene products that evolved to facilitate bacterial survival in the broader environment have potentially been prematurely mischaracterized as VFs that contribute to pathogenesis in the context of human biology. Examples of the reasoning that can affect misinterpretation, or at least a premature assignment of mechanistic causation, are provided. Our aim is to refine the categorization of VFs by emphasizing a broader biological view of their origin.
Collapse
Affiliation(s)
- Matthew Jackson
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Susan Vineberg
- Department of Philosophy, Wayne State University, Detroit, MI 48201, USA;
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Li X, Xiang F, Liu T, Chen Z, Zhang M, Li J, Kang X, Wu R. Leveraging existing 16S rRNA gene surveys to decipher microbial signatures and dysbiosis in cervical carcinogenesis. Sci Rep 2024; 14:11532. [PMID: 38773342 PMCID: PMC11109339 DOI: 10.1038/s41598-024-62531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
The presence of dysbiotic cervicovaginal microbiota has been observed to be linked to the persistent development of cervical carcinogenesis mediated by the human papillomavirus (HPV). Nevertheless, the characteristics of the cervical microbiome in individuals diagnosed with cervical cancer (CC) are still not well understood. Comprehensive analysis was conducted by re-analyzing the cervical 16S rRNA sequencing datasets of a total of 507 samples from six previously published studies. We observed significant alpha and beta diversity differences in between CC, cervical intraepithelial neoplasia (CIN) and normal controls (NC), but not between HPV and NC in the combined dataset. Meta-analysis revealed that opportunistic pernicious microbes Streptococcus, Fusobacterium, Pseudomonas and Anaerococcus were enriched in CC, while Lactobacillus was depleted compared to NC. Members of Gardnerella, Sneathia, Pseudomonas, and Fannyhessea have significantly increased relative abundance compared to other bacteria in the CIN group. Five newly identified bacterial genera were found to differentiate CC from NC, with an area under the curve (AUC) of 0.8947. Moreover, co-occurrence network analysis showed that the most commonly encountered Lactobacillus was strongly negatively correlated with Prevotella. Overall, our study identified a set of potential biomarkers for CC from samples across different geographic regions. Our meta-analysis provided significant insights into the characteristics of dysbiotic cervicovaginal microbiota undergoing CC, which may lead to the development of noninvasive CC diagnostic tools and therapeutic interventions.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Tong Liu
- Department of Molecular Science, Uppsala Biocenter, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Mengzhe Zhang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Jinpeng Li
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, China.
| |
Collapse
|
5
|
Bhalla M, Herring S, Lenhard A, Wheeler JR, Aswad F, Klumpp K, Rebo J, Wang Y, Wilhelmsen K, Fortney K, Bou Ghanem EN. The prostaglandin D2 antagonist asapiprant ameliorates clinical severity in young hosts infected with invasive Streptococcus pneumoniae. Infect Immun 2024; 92:e0052223. [PMID: 38629842 PMCID: PMC11075459 DOI: 10.1128/iai.00522-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Sydney Herring
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Alexsandra Lenhard
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Joshua R. Wheeler
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Fred Aswad
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Yan Wang
- BIOAGE Labs Inc., Richmond, California, USA
| | | | | | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, School of Medicine, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Kang D, Xu Q, Kirienko NV. In vitro lung epithelial cell model reveals novel roles for Pseudomonas aeruginosa siderophores. Microbiol Spectr 2024; 12:e0369323. [PMID: 38311809 PMCID: PMC10913452 DOI: 10.1128/spectrum.03693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
7
|
Ungor I, Apidianakis Y. Bacterial synergies and antagonisms affecting Pseudomonas aeruginosa virulence in the human lung, skin and intestine. Future Microbiol 2024; 19:141-155. [PMID: 37843410 DOI: 10.2217/fmb-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pseudomonas aeruginosa requires a significant breach in the host defense to cause an infection. While its virulence factors are well studied, its tropism cannot be explained only by studying its interaction with the host. Why are P. aeruginosa infections so rare in the intestine compared with the lung and skin? There is not enough evidence to claim specificity in virulence factors deployed by P. aeruginosa in each anatomical site, and host physiology differences between the lung and the intestine cannot easily explain the observed differences in virulence. This perspective highlights a relatively overlooked parameter in P. aeruginosa virulence, namely, potential synergies with bacteria found in the human skin and lung, as well as antagonisms with bacteria of the human intestine.
Collapse
Affiliation(s)
- Izel Ungor
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| |
Collapse
|
8
|
Kang D, Xu Q, Kirienko NV. In vitro Lung Epithelial Cell Model Reveals Novel Roles for Pseudomonas aeruginosa Siderophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525796. [PMID: 36747656 PMCID: PMC9901015 DOI: 10.1101/2023.01.26.525796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multidrug-resistant Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model to characterize the impact and molecular mechanism of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model for human bronchial epithelial cells (16HBE). We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipid factors or genetic disruption of rhamnolipid biosynthesis was sufficient to abrogate conditioned medium toxicity. Furthermore, we also examine the effects of purified pyoverdine exposure on 16HBE cells. While pyoverdine accumulated within cells, the siderophore was largely sequestered within early endosomes, showing minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several proinflammatory genes. However, pyoverdine potentiated these iron chelators in activating proinflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | |
Collapse
|
9
|
Dell’Anno F, Vitale GA, Buonocore C, Vitale L, Palma Esposito F, Coppola D, Della Sala G, Tedesco P, de Pascale D. Novel Insights on Pyoverdine: From Biosynthesis to Biotechnological Application. Int J Mol Sci 2022; 23:ijms231911507. [PMID: 36232800 PMCID: PMC9569983 DOI: 10.3390/ijms231911507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes’ survival by mediating biofilm formation and virulence. In this review, we reorganize the information produced in recent years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs’ use and focus on their role as therapeutic target themselves. We assess the current biotechnological applications of different sectors and evaluate the state-of-the-art technology relating to the use of synthetic biology tools for pathway engineering. Finally, we review the most recent methods and techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.
Collapse
|
10
|
Effect of samarium oxide nanoparticles on virulence factors and motility of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol 2022; 38:209. [PMID: 36040540 DOI: 10.1007/s11274-022-03384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Abstract
Biofilm formation and quorum sensing (QS) dependent virulence factors are considered the major causes of the emergence of drug resistance, therapeutic failure and development of Pseudomonas aeruginosa infections. This study aimed to investigate the effects of samarium oxide nanoparticles (Sm2O3NPs) on biofilm, virulence factors, and motility of multidrug-resistant P. aeruginosa. Sm2O3NPs were synthesized using curcumin and characterized by Transmission Electron Microscopy, X-ray diffractometer, Field Emission Scanning Electron Microscopy, and Energy-dispersive X-ray spectroscopy. Minimum inhibitory concentration (MIC) was determined using broth microdilution method. The antibiofilm potential of Sm2O3NPs was also evaluated by crystal violet staining and light microscopy examination. Then, the effect of sub-MICs concentrations of Sm2O3NPs on the proteolytic and hemolytic activities of P. aeruginosa was investigated. Finally, the effect of Sm2O3NPs on various types of motility including swarming, swimming, and twitching was studied. Our results showed that Sm2O3NPs significantly inhibited biofilm formation of P. aeruginosa by 49-61%. Additionally, sub-MICs concentrations of Sm2O3NPs effectively decreased virulence factors including pyocyanin (33-55%), protease (24-45%), and hemolytic activity (22-41%). Moreover, swarming, swimming, and twitching motility remarkably was reduced after exposure to the NPs. The findings of this work showed that Sm2O3NPs have a high potential in inhibiting QS-dependent virulence of P. aeruginosa, which could be considered for antibacterial chemotherapy after further characterization.
Collapse
|
11
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Sabra W, Wang W, Goepfert C, Zeng AP. Food-web and metabolic interactions of the lung inhabitants Streptococcus pneumoniae and Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4885-4898. [PMID: 35706134 DOI: 10.1111/1462-2920.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Bacteria that successfully adapt to different substrates and environmental niches within the lung and overcome the immune defence can cause serious lung infections. Such infections are generally complex, and recognised as polymicrobial in nature. Both Pseudomonas aeruginosa and Streptococcus pneumoniae can cause chronic lung infections and were both detected in cystic fibrosis (CF) lung at different stages. In this study, single and dual species cultures of Pseudomonas aeruginosa and Streptococcus pneumoniae were studied under well controlled planktonic growth conditions. Under pH-controlled conditions, both species apparently benefited from the presence of the other. In co-culture with P. aeruginosa, S. pneumoniae grew efficiently under aerobic conditions, whereas in pure S. pneumoniae culture, growth inhibition occurred in bioreactors with dissolved oxygen concentrations above the microaerobic range. Lactic acid and acetoin that are produced by S. pneumoniae was efficiently utilised by P. aeruginosa. In pH-uncontrolled co-cultures, the low pH triggered by S. pneumoniae assimilation of glucose and lactic acid production negatively affected the growth of both strains. Nevertheless, ammonia production improved significantly, and P. aeruginosa growth dominated at later growth stages. This study revealed unreported metabolic interactions of two important pathogenic microorganisms and shed new lights into pathophysiology of bacterial lung infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wael Sabra
- Faculty of life science, Rheine-Waal University of applied sciences, Marie-Curie-Straße 1, Kleve.,Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Christiane Goepfert
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
13
|
Kin selection for cooperation in natural bacterial populations. Proc Natl Acad Sci U S A 2022; 119:2119070119. [PMID: 35193981 PMCID: PMC8892524 DOI: 10.1073/pnas.2119070119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Bacteria secrete many molecules outside the cell, where they provide benefits to other cells. One potential reason for producing these “public goods” is that they benefit closely related cells that share the gene for cooperation (kin selection). While many laboratory studies have supported this hypothesis, there is a lack of evidence that kin selection favors cooperation in natural populations. We examined bacterial genomes from the environment and used population genetics theory to analyze the DNA sequences. Our analyses suggest that public goods cooperation has indeed been favored by kin selection in natural populations. Bacteria produce a range of molecules that are secreted from the cell and can provide a benefit to the local population of cells. Laboratory experiments have suggested that these “public goods” molecules represent a form of cooperation, favored because they benefit closely related cells (kin selection). However, there is a relative lack of data demonstrating kin selection for cooperation in natural populations of bacteria. We used molecular population genetics to test for signatures of kin selection at the genomic level in natural populations of the opportunistic pathogen Pseudomonas aeruginosa. We found consistent evidence from multiple traits that genes controlling putatively cooperative traits have higher polymorphism and greater divergence and are more likely to harbor deleterious mutations relative to genes controlling putatively private traits, which are expressed at similar rates. These patterns suggest that cooperative traits are controlled by kin selection, and we estimate that the relatedness for social interactions in P. aeruginosa is r = 0.84. More generally, our results demonstrate how molecular population genetics can be used to study the evolution of cooperation in natural populations.
Collapse
|
14
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
15
|
Alleviation of Pseudomonas aeruginosa Infection by Propeptide-Mediated Inhibition of Protease IV. Microbiol Spectr 2021; 9:e0078221. [PMID: 34704789 PMCID: PMC8549743 DOI: 10.1128/spectrum.00782-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa, an opportunistic human pathogen, expresses protease IV (PIV) for infection. Since the PIV activity can be inhibited by its propeptide, we tried to alleviate the severity of P. aeruginosa infection using the purified PIV propeptide (PIVpp). The PIVpp treatment of P. aeruginosa could significantly inhibit the PIV activity and reduce the virulence of P. aeruginosa in multiple invertebrate infection models, such as nematodes, brine shrimp, and mealworms. The effectiveness of PIVpp was further confirmed using mouse skin infection and acute/chronic lung infection models. The amount of PIVpp that inhibited the PIV activity of P. aeruginosa by 65% could alleviate the severity of infection significantly in all of the skin and acute/chronic lung infections. In addition, the PIVpp treatment of P. aeruginosa facilitated the healing of the skin wound infections and repressed the growth of P. aeruginosa in the infected lung. The PIVpp itself did not cause the induction of inflammatory cytokines or have any harmful effects on host tissues and did not affect bacterial growth. Taken together, P. aeruginosa infections can be alleviated by PIVpp treatment. IMPORTANCE Pseudomonas aeruginosa is a highly antibiotic-resistant pathogen and is extremely difficult to treat. Instead of using conventional antibiotics, we attempted to alleviate P. aeruginosa infection using factors that P. aeruginosa itself produces naturally. Extracellular proteases are powerful virulence factors and important targets to control the P. aeruginosa infections. Propeptides are originally expressed as part of extracellular proteases, inhibiting their activity until they go out of the cell, preventing them from becoming toxic to the cells themselves. We confirmed, from multiple animal experiments, that treating P. aeruginosa with the purified propeptide can alleviate its infectivity. Propeptides specifically inhibit only their cognate protease without inhibiting other essential proteases of the host. The development of resistance can be avoided because the propeptide-mediated inhibition is an inherent mechanism of P. aeruginosa; hence, it will be difficult for P. aeruginosa to alter this mechanism. Since propeptides do not affect bacterial growth, there is no selective pressure to develop resistant cells.
Collapse
|
16
|
Hammers D, Carothers K, Lee S. The Role of Bacterial Proteases in Microbe and Host-microbe Interactions. Curr Drug Targets 2021; 23:222-239. [PMID: 34370632 DOI: 10.2174/1389450122666210809094100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Secreted proteases are an important class of factors used by bacterial to modulate their extracellular environment through the cleavage of peptides and proteins. These proteases can range from broad, general proteolytic activity to high degrees of substrate specificity. They are often involved in interactions between bacteria and other species, even across kingdoms, allowing bacteria to survive and compete within their niche. As a result, many bacterial proteases are of clinical importance. The immune system is a common target for these enzymes, and bacteria have evolved ways to use these proteases to alter immune responses for their benefit. In addition to the wide variety of human proteins that can be targeted by bacterial proteases, bacteria also use these secreted factors to disrupt competing microbes, ranging from outright antimicrobial activity to disrupting processes like biofilm formation. OBJECTIVE In this review, we address how bacterial proteases modulate host mechanisms of protection from infection and injury, including immune factors and cell barriers. We also discuss the contributions of bacterial proteases to microbe-microbe interactions, including antimicrobial and anti-biofilm dynamics. CONCLUSION Bacterial secreted proteases represent an incredibly diverse group of factors that bacteria use to shape and thrive in their microenvironment. Due to the range of activities and targets of these proteases, some have been noted for having potential as therapeutics. The vast array of bacterial proteases and their targets remains an expanding field of research, and this field has many important implications for human health.
Collapse
Affiliation(s)
- Daniel Hammers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| | - Shaun Lee
- Department of Biological Sciences, University of Notre Dame, Galvin Hall, Notre Dame, IN 46556, United States
| |
Collapse
|
17
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
18
|
An In Vitro Cell Culture Model for Pyoverdine-Mediated Virulence. Pathogens 2020; 10:pathogens10010009. [PMID: 33374230 PMCID: PMC7824568 DOI: 10.3390/pathogens10010009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.
Collapse
|
19
|
Xie Y, Feng Y, Li W, Zhan F, Huang G, Hu H, Xiong Y, Tan B, Chen T. Revealing the Disturbed Vaginal Micobiota Caused by Cervical Cancer Using High-Throughput Sequencing Technology. Front Cell Infect Microbiol 2020; 10:538336. [PMID: 33365275 PMCID: PMC7750457 DOI: 10.3389/fcimb.2020.538336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth most prevalent cancer type among all malignancies, so it is of great significance to find its actual pathogenesis mechanisms. In the present study, 90 women were enrolled, and high-throughput sequencing technology was firstly used to analyze the vaginal microbiota of healthy women (C group), cervical intraepithelial neoplasia patients (CIN group) and cervical cancer patients (CER group). Our results indicates that compared with C group, a higher HPV infection rate as well as increased Neutrophil ratio and tumor marker squamous cell carcinoma antigen (SCCA) were obtained, and a decrease in Lymphocyte ratio and Hemoglobin were also present. In addition, the cervical cancer showed a strong association with reduced probiotics Lactobacillus, increased pathogens Prevotella spp., Sneathia spp. and Pseudomonas spp. These results prove that the immunological changes generated by the cervical cancer and the vaginal microbiota can interact with each other. However, further study investigating the key bacteria for cervical cancer is still needed, which can be a clue for the diagnosis or treatment of cervical cancer.
Collapse
Affiliation(s)
- Yupei Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Fuliang Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Genhua Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yifei Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
20
|
Li XH, Lee JH. Quorum sensing-dependent post-secretional activation of extracellular proteases in Pseudomonas aeruginosa. J Biol Chem 2019; 294:19635-19644. [PMID: 31727738 DOI: 10.1074/jbc.ra119.011047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/11/2019] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa secretes multiple proteases that are implicated in its pathogenesis, and most of them are regulated by quorum sensing (QS). In this study, we found that the activities of three major extracellular proteases, protease IV (PIV), elastase A (LasA), and elastase B (LasB), are reduced considerably when expressed in a QS mutant (MW1). PIV and LasA expressed in MW1 exhibited little activity, even when purified, and their activities were inhibited by noncleavage or binding of their propeptides. LasB was activated by a QS-dependent factor, indicating that, unlike what has been proposed previously, LasB is not autoactivated. When LasB was relieved from inhibition, it activated PIV, which then sequentially processed pro-LasA to mature LasA. When activated, LasB was not inhibited by exogenous addition of its propeptide, but LasA and PIV were inhibited by their propeptides, even after prior activation. These differences may be explained by the fact that LasB can degrade its own propeptide but PIV and LasA cannot. We also found that, although PIV is the preferred LasA-activating factor, LasB can also partially activate LasA. Overall, LasB, PIV, and LasA were activated postsecretionally in a cascading manner in which the initial activation of LasB was controlled tightly by QS at the protein level in addition to the well-known transcriptional control of these proteases by QS. Interestingly, human elastase also activated LasA, indicating that the activation cascade is triggered by host factors during infection. In summary, a QS-induced proteolytic cascade activates secreted proteases from P. aeruginosa.
Collapse
Affiliation(s)
- Xi-Hui Li
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
21
|
Pseudomonas aeruginosa Keratitis: Protease IV and PASP as Corneal Virulence Mediators. Microorganisms 2019; 7:microorganisms7090281. [PMID: 31443433 PMCID: PMC6780138 DOI: 10.3390/microorganisms7090281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of bacterial keratitis, especially in users of contact lenses. These infections are characterized by extensive degradation of the corneal tissue mediated by Pseudomonas protease activities, including both Pseudomonas protease IV (PIV) and the P. aeruginosa small protease (PASP). The virulence role of PIV was determined by the reduced virulence of a PIV-deficient mutant relative to its parent strain and the mutant after genetic complementation (rescue). Additionally, the non-ocular pathogen Pseudomonas putida acquired corneal virulence when it produced active PIV from a plasmid-borne piv gene. The virulence of PIV is not limited to the mammalian cornea, as evidenced by its destruction of respiratory surfactant proteins and the cytokine interleukin-22 (IL-22), the key inducer of anti-bacterial peptides. Furthermore, PIV contributes to the P. aeruginosa infection of both insects and plants. A possible limitation of PIV is its inefficient digestion of collagens; however, PASP, in addition to cleaving multiple soluble proteins, is able to efficiently cleave collagens. A PASP-deficient mutant lacks the corneal virulence of its parent or rescue strain evidencing its contribution to corneal damage, especially epithelial erosion. Pseudomonas-secreted proteases contribute importantly to infections of the cornea, mammalian lung, insects, and plants.
Collapse
|
22
|
Tang A, Caballero AR, Marquart ME, Bierdeman MA, O'Callaghan RJ. Mechanism of Pseudomonas aeruginosa Small Protease (PASP), a Corneal Virulence Factor. Invest Ophthalmol Vis Sci 2019; 59:5993-6002. [PMID: 30572344 PMCID: PMC6306078 DOI: 10.1167/iovs.18-25834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Pseudomonas aeruginosa is the leading cause of contact lens-associated bacterial keratitis. Secreted bacterial proteases have a key role in keratitis, including the P. aeruginosa small protease (PASP), a proven corneal virulence factor. We investigated the mechanism of PASP and its importance to corneal toxicity. Methods PASP, a serine protease, was tested for activity on various substrates. The catalytic triad of PASP was sought by bioinformatic analysis and site-directed mutagenesis. All mutant constructs were expressed in a P. aeruginosa PASP-deficient strain; the resulting proteins were purified using ion-exchange, gel filtration, or affinity chromatography; and the proteolytic activity was assessed by gelatin zymography and a fluorometric assay. The purified PASP proteins with single amino acid changes were injected into rabbit corneas to determine their pathological effects. Results PASP substrates were cleaved at arginine or lysine residues. Alanine substitution of PASP residues Asp-29, His-34, or Ser-47 eliminated protease activity, whereas PASP with substitution for Ser-59 (control) retained activity. Computer modeling and Western blot analysis indicated that formation of a catalytic triad required dimer formation, and zymography demonstrated the protease activity of the homodimer, but not the monomer. PASP with the Ser-47 mutation, but not with the control mutation, lacked corneal toxicity, indicating the importance of protease activity. Conclusions PASP is a secreted serine protease that can cleave proteins at arginine or lysine residues and PASP activity requires dimer or larger aggregates to create a functional active site. Most importantly, proteolytic PASP molecules demonstrated highly significant toxicity for the rabbit cornea.
Collapse
Affiliation(s)
- Aihua Tang
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Armando R Caballero
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Mary E Marquart
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Michael A Bierdeman
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Richard J O'Callaghan
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
23
|
Khan F, Manivasagan P, Lee JW, Pham DTN, Oh J, Kim YM. Fucoidan-Stabilized Gold Nanoparticle-Mediated Biofilm Inhibition, Attenuation of Virulence and Motility Properties in Pseudomonas aeruginosa PAO1. Mar Drugs 2019; 17:E208. [PMID: 30987163 PMCID: PMC6520775 DOI: 10.3390/md17040208] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistance in Pseudomonas aeruginosa due to biofilm formation has transformed this opportunistic pathogen into a life-threatening one. Biosynthesized nanoparticles are increasingly being recognized as an effective anti-biofilm strategy to counter P. aeruginosa biofilms. In the present study, gold nanoparticles (AuNPs) were biologically synthesized and stabilized using fucoidan, which is an active compound sourced from brown seaweed. Biosynthesized fucoidan-stabilized AuNPs (F-AuNPs) were subjected to characterization using UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), field emission transmission electron microscopy (FE-TEM), dynamic light scattering (DLS), and energy dispersive X-ray diffraction (EDX). The biosynthesized F-AuNPs were then evaluated for their inhibitory effects on P. aeruginosa bacterial growth, biofilm formation, virulence factor production, and bacterial motility. Overall, the activities of F-AuNPs towards P. aeruginosa were varied depending on their concentration. At minimum inhibitory concentration (MIC) (512 µg/mL) and at concentrations above MIC, F-AuNPs exerted antibacterial activity. In contrast, the sub-inhibitory concentration (sub-MIC) levels of F-AuNPs inhibited biofilm formation without affecting bacterial growth, and eradicated matured biofilm. The minimum biofilm inhibition concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were identified as 128 µg/mL. Furthermore, sub-MICs of F-AuNPs also attenuated the production of several important virulence factors and impaired bacterial swarming, swimming, and twitching motilities. Findings from the present study provide important insights into the potential of F-AuNPs as an effective new drug for controlling P. aeruginosa-biofilm-related infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | | | - Jang-Won Lee
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea.
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|