1
|
Li H, Li R, Yu H, Zhang Y, Feng H. Evolution and classification of Ser/Thr phosphatase PP2C family in bacteria: Sequence conservation, structures, domain distribution. PLoS One 2025; 20:e0322880. [PMID: 40388423 PMCID: PMC12088040 DOI: 10.1371/journal.pone.0322880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/28/2025] [Indexed: 05/21/2025] Open
Abstract
Serine/threonine kinases (STKs) and serine/threonine phosphatases (STPs) are widely present across various organisms and play crucial roles in regulating cellular processes such as growth, proliferation, signal transduction, and other physiological functions. Recent research has increasingly focused on the regulation of STKs and STPs in bacteria. STKs have been well studied, identified and characterized in a variety of bacterial species. However, the role of STPs in bacteria remains less understood, and the number of proteins characterized is limited. It has been found that most of the STPs characterized in bacteria were Mg2+/Mn2+ dependent 2C protein phosphatases (PP2Cs), but the evolutionary relationship and taxonomic distribution of bacterial PP2C phosphatases were still not fully elucidated. In this study, we utilized bacterial PP2C phosphatase sequences from the InterPro database to perform a phylogenetic analysis, categorizing the family into five groups. Based on this classification, we examined the evolutionary relationships, species distribution, sequence and structural variations, and domain distribution characteristics of bacterial PP2C phosphatases. Our analysis uncovered evidence of a common evolutionary origin for bacterial PP2C phosphatases. These findings advance the understanding of PP2C phosphatases, offering valuable insights for future functional studies of bacterial serine/threonine phosphatases and aiding in the design of targeted therapeutics for pathogenic bacteria.
Collapse
Affiliation(s)
- Hang Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Li
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyue Yu
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Youhuan Zhang
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hong Feng
- Sichuan Key Laboratory of Molecular Biology and Biotechnology, Chengdu, China
- College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Bush MJ, Casu B, Schlimpert S. Dividing lines: compartmentalisation and division in Streptomyces. Curr Opin Microbiol 2025; 85:102611. [PMID: 40300397 DOI: 10.1016/j.mib.2025.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
Bacteria display diverse strategies for cell division, exemplified by the multicellular life cycle of Streptomyces, a genus within the Actinomycetota phylum. Filamentous growing Streptomyces utilise two distinct division modes: during vegetative growth, nonconstricting cross-walls divide the mycelial network into long multinucleate compartments, while during reproductive growth, sporulation septation results in a 'multiple division event' that produces dozens of unigenomic spores that can separate and disperse in the environment. The cellular mechanisms governing these two types of cell division in Streptomyces are inherently complex and present specific biological challenges that involve core cell division proteins and several genus-specific factors. This review highlights recent advances and open questions in our understanding of Streptomyces cell biology, with a focus on key cell division components and the interplay of the chromosome with the division machinery, enabling these organisms to grow as multicellular filaments and form unicellular spores.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Centre for Microbial Interactions, Norwich Research Park, Norwich NR4 7UG, UK.
| | - Bastien Casu
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; Centre for Microbial Interactions, Norwich Research Park, Norwich NR4 7UG, UK.
| |
Collapse
|
3
|
Sharma DK, Soni I, Rajpurohit YS. Surviving the storm: exploring the role of natural transformation in nutrition and DNA repair of stressed Deinococcus radiodurans. Appl Environ Microbiol 2025; 91:e0137124. [PMID: 39651863 PMCID: PMC11784314 DOI: 10.1128/aem.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 02/01/2025] Open
Abstract
Deinococcus radiodurans, a natural transformation (NT)-enabled bacterium renowned for its exceptional radiation resistance, employs unique DNA repair and oxidative stress mitigation mechanisms as a strategic response to DNA damage. This study excavates into the intricate roles of NT machinery in the stressed D. radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA, which are instrumental in the uptake and processing of extracellular DNA (eDNA). Our data reveal that NT not only supports the nutritional needs of D. radiodurans under stress but also has roles in DNA repair. The study findings establish that NT-specific proteins (ComEA, ComEC, and endonuclease A [EndA]) may contribute to support the nutritional requirements in unstressed and heavily DNA-damaged cells, while DprA contributes differently and in a context-dependent manner to navigating through the DNA damage storm. Thus, this dual functionality of NT-specific genes is proposed to be a contributing factor in the remarkable ability of D. radiodurans to survive and thrive in environments characterized by high levels of DNA-damaging agents.IMPORTANCEDeinococcus radiodurans is a bacterium known for its extraordinary radiation resistance. This study explores the roles of NT machinery in the radiation-resistant bacterium Deinococcus radiodurans, focusing on the genes comEA, comEC, endA, pilT, and dprA. These genes are crucial for the uptake and processing of eDNA and contribute to the bacterium nutritional needs and DNA repair under stress. The findings suggest that the NT-specific proteins ComEA, ComEC, and EndA may help meet the nutritional needs of unstressed and heavily DNA-damaged cells, whereas DprA plays a distinct role that varies, depending on the context in aiding cells to cope with DNA damage. The functionality of NT genes is proposed to enhance D. radiodurans survival in environments with high levels of DNA-damaging agents.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Ishu Soni
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute (DAE-Deemed University), Mumbai, India
| |
Collapse
|
4
|
Yuan Y, Ning W, Chen J, Li J, Xue T, An C, Mao L, Zhang G, Zhou S, Ding J, Yang X, Ye J. Serine/threonine protein kinase mediates rifampicin resistance in Brucella melitensis through interacting with ribosomal protein RpsD and affecting antioxidant capacity. mSystems 2025; 10:e0110924. [PMID: 39636113 PMCID: PMC11748488 DOI: 10.1128/msystems.01109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Brucellosis, a zoonotic disease, has re-emerged in both humans and animals, causing significant economic losses globally. Recently, an increasing number of rifampicin-resistant Brucella strains have been isolated worldwide without detectable mutations in known antibiotic resistance genes. Here, this study identified the deletion of serine/threonine protein kinase (STPK) gene in B. melitensis as an efficient trigger for rifampicin resistance using bioinformatics predictions, a transposon mutant library, and gene mutation strains. Notably, the absence of the STPK could increase the expression of ribosomal proteins and genes involved in sulfur metabolism and reduced glutathione, and decrease NADPH oxidase activity and NADP+/NADPH ratio, which is associated with the antioxidant capacity of B. melitensis. Moreover, co-immunoprecipitation revealed that STPK could efficiently interact with the ribosomal protein RpsD, possibly altering protein translation and riboswitch expression. These findings demonstrate that the STPK gene mediates resistance by regulating sulfur metabolism to counteract the reactive oxygen species induced by rifampicin. Furthermore, the approaches developed in this study provide a platform for screening new resistance genes in Brucella spp., and the identified STPK or its pathway can serve as a potential target for new drug development against rifampicin-resistant Brucella spp. IMPORTANCE New rifampicin resistance gene in Brucella melitensis is identified via bioinformatics predictions and a whole-genome transposon mutant library, new mechanisms of rifampicin resistance in B. melitensis, and new function of serine/threonine protein kinase gene and its interaction proteins.
Collapse
Affiliation(s)
- Yaqin Yuan
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine of Ministry of Education, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenqing Ning
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
| | - Junjie Chen
- Tongliao Mongolian Medical Hospital (Tongliao Mongolian Medical Research Institute), China Center for Disease Control and Prevention, Institute of Infectious Disease Control and Prevention, Co-construction research base for brucellosis, Tongliao City, China
| | - Jiquan Li
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
| | - Tianqi Xue
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine of Ministry of Education, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cuihong An
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi’an, China
| | - Lingling Mao
- Liaoning Province Center for Disease Control and Prevention, Shenyang, China
| | - Guangzhi Zhang
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhong Zhou
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowen Yang
- Key Laboratory of Animal Biosafe Risk Prevention and Control (North), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianqiang Ye
- Jiangsu Key Laboratory of Zoonosis, Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine of Ministry of Education, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Jeong S, Singh H, Jung JH, Jung KW, Ryu S, Lim S. Comparative genomics of Deinococcus radiodurans: unveiling genetic discrepancies between ATCC 13939K and BAA-816 strains. Front Microbiol 2024; 15:1410024. [PMID: 38962131 PMCID: PMC11219805 DOI: 10.3389/fmicb.2024.1410024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024] Open
Abstract
The Deinococcus genus is renowned for its remarkable resilience against environmental stresses, including ionizing radiation, desiccation, and oxidative damage. This resilience is attributed to its sophisticated DNA repair mechanisms and robust defense systems, enabling it to recover from extensive damage and thrive under extreme conditions. Central to Deinococcus research, the D. radiodurans strains ATCC BAA-816 and ATCC 13939 facilitate extensive studies into this remarkably resilient genus. This study focused on delineating genetic discrepancies between these strains by sequencing our laboratory's ATCC 13939 specimen (ATCC 13939K) and juxtaposing it with ATCC BAA-816. We uncovered 436 DNA sequence differences within ATCC 13939K, including 100 single nucleotide variations, 278 insertions, and 58 deletions, which could induce frameshifts altering protein-coding genes. Gene annotation revisions accounting for gene fusions and the reconciliation of gene lengths uncovered novel protein-coding genes and refined the functional categorizations of established ones. Additionally, the analysis pointed out genome structural variations due to insertion sequence (IS) elements, underscoring the D. radiodurans genome's plasticity. Notably, ATCC 13939K exhibited a loss of six ISDra2 elements relative to BAA-816, restoring genes fragmented by ISDra2, such as those encoding for α/β hydrolase and serine protease, and revealing new open reading frames, including genes imperative for acetoin decomposition. This comparative genomic study offers vital insights into the metabolic capabilities and resilience strategies of D. radiodurans.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Misra HS, Rajpurohit YS. DNA damage response and cell cycle regulation in bacteria: a twist around the paradigm. Front Microbiol 2024; 15:1389074. [PMID: 38605710 PMCID: PMC11007091 DOI: 10.3389/fmicb.2024.1389074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.
Collapse
Affiliation(s)
- Hari Sharan Misra
- School of Sciences, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
7
|
De Mandal S, Srinivasan S, Jeon J. Complete genome sequence of Deinococcus rubellus Ant6 isolated from the fish muscle in the Antarctic Ocean. Front Bioeng Biotechnol 2023; 11:1257705. [PMID: 37908375 PMCID: PMC10614293 DOI: 10.3389/fbioe.2023.1257705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Surajit De Mandal
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women’s University, Seoul, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Liu S, Wang F, Chen H, Yang Z, Ning Y, Chang C, Yang D. New Insights into Radio-Resistance Mechanism Revealed by (Phospho)Proteome Analysis of Deinococcus Radiodurans after Heavy Ion Irradiation. Int J Mol Sci 2023; 24:14817. [PMID: 37834265 PMCID: PMC10572868 DOI: 10.3390/ijms241914817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Deinococcus radiodurans (D. radiodurans) can tolerate various extreme environments including radiation. Protein phosphorylation plays an important role in radiation resistance mechanisms; however, there is currently a lack of systematic research on this topic in D. radiodurans. Based on label-free (phospho)proteomics, we explored the dynamic changes of D. radiodurans under various doses of heavy ion irradiation and at different time points. In total, 2359 proteins and 1110 high-confidence phosphosites were identified, of which 66% and 23% showed significant changes, respectively, with the majority being upregulated. The upregulated proteins at different states (different doses or time points) were distinct, indicating that the radio-resistance mechanism is dose- and stage-dependent. The protein phosphorylation level has a much higher upregulation than protein abundance, suggesting phosphorylation is more sensitive to irradiation. There were four distinct dynamic changing patterns of phosphorylation, most of which were inconsistent with protein levels. Further analysis revealed that pathways related to RNA metabolism and antioxidation were activated after irradiation, indicating their importance in radiation response. We also screened some key hub phosphoproteins and radiation-responsive kinases for further study. Overall, this study provides a landscape of the radiation-induced dynamic change of protein expression and phosphorylation, which provides a basis for subsequent functional and applied studies.
Collapse
Affiliation(s)
- Shihao Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| | - Fei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| | - Heye Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| | - Zhixiang Yang
- College of Life Sciences, Hebei University, Baoding 071002, China;
| | - Yifan Ning
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
- College of Life Sciences, Hebei University, Baoding 071002, China;
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| |
Collapse
|
9
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
10
|
Chaudhary R, Kota S, Misra HS. DivIVA Phosphorylation Affects Its Dynamics and Cell Cycle in Radioresistant Deinococcus radiodurans. Microbiol Spectr 2023; 11:e0314122. [PMID: 36744915 PMCID: PMC10100863 DOI: 10.1128/spectrum.03141-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 02/07/2023] Open
Abstract
DivIVA is a member of the Min family of proteins that spatially regulates septum formation at the midcell position and cell pole determination in Bacillus subtilis. Deinococcus radiodurans, a Gram-positive coccus-shaped bacterium, is characterized by its extreme resistance to DNA-damaging agents, including radiation. D. radiodurans cells exposed to gamma radiation undergo cell division arrest by as-yet-uncharacterized mechanisms. divIVA is shown to be an essential cell division gene in this bacterium, and DivIVA of D. radiodurans (drDivIVA) interacts with genome segregation proteins through its N-terminal region. Earlier, RqkA, a gamma radiation-responsive Ser/Thr quinoprotein kinase, was characterized for its role in radioresistance in D. radiodurans. Here, we showed that RqkA phosphorylates drDivIVA at the threonine 19 (T19) residue. The phospho-mimetic mutant with a mutation of T19 to E19 in DivIVA (DivIVAT19E) is found to be functionally different from the phospho-ablative mutant (DivIVAT19A) or the wild-type drDivIVA. A DivIVAT19E-red fluorescent protein (RFP) fusion expressed in the wild-type background showed the arrest in the typical dynamics of drDivIVA and the loss of its interaction with the genome segregation protein ParA2. The allelic replacement of divIVA with divIVAT19E-rfp was not tolerated unless drDivIVA was expressed episomally, while there was no phenotypic change when the wild-type allele was replaced with either divIVAT19A-rfp or divIVA-rfp. These results suggested that the phosphorylation of T19 in drDivIVA by RqkA affected its in vivo functions, which may contribute to the cell cycle arrest in this bacterium. IMPORTANCE Deinococcus radiodurans, a radioresistant bacterium, lacks LexA/RecA-mediated DNA damage response and cell cycle regulation as known in other bacteria. However, it adjusts its transcriptome and proteome upon DNA damage. In eukaryotes, the DNA damage response and cell cycle are regulated by Ser/Thr protein kinases. In D. radiodurans, we characterized a gamma radiation-responsive Ser/Thr quinoprotein kinase (RqkA) that phosphorylated DNA repair and cell division proteins in this bacterium. In previous work, the effect of S/T phosphorylation by RqkA on activity improvement of the DNA repair proteins has been demonstrated. This study reports that Ser phosphorylation by RqkA attenuates the function of a cell polarity and plane of cell division-determining protein, DivIVA, and its cellular dynamics in response to DNA damage, which might help to understand the mechanism of cell cycle regulation in this bacterium.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- School of Science, GITAM, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
11
|
Huemer M, Mairpady Shambat S, Hertegonne S, Bergada-Pijuan J, Chang CC, Pereira S, Gómez-Mejia A, Van Gestel L, Bär J, Vulin C, Pfammatter S, Stinear TP, Monk IR, Dworkin J, Zinkernagel AS. Serine-threonine phosphoregulation by PknB and Stp contributes to quiescence and antibiotic tolerance in Staphylococcus aureus. Sci Signal 2023; 16:eabj8194. [PMID: 36595572 DOI: 10.1126/scisignal.abj8194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/06/2022] [Indexed: 01/05/2023]
Abstract
Staphylococcus aureus can cause infections that are often chronic and difficult to treat, even when the bacteria are not antibiotic resistant because most antibiotics act only on metabolically active cells. Subpopulations of persister cells are metabolically quiescent, a state associated with delayed growth, reduced protein synthesis, and increased tolerance to antibiotics. Serine-threonine kinases and phosphatases similar to those found in eukaryotes can fine-tune essential bacterial cellular processes, such as metabolism and stress signaling. We found that acid stress-mimicking conditions that S. aureus experiences in host tissues delayed growth, globally altered the serine and threonine phosphoproteome, and increased threonine phosphorylation of the activation loop of the serine-threonine protein kinase B (PknB). The deletion of stp, which encodes the only annotated functional serine-threonine phosphatase in S. aureus, increased the growth delay and phenotypic heterogeneity under different stress challenges, including growth in acidic conditions, the intracellular milieu of human cells, and abscesses in mice. This growth delay was associated with reduced protein translation and intracellular ATP concentrations and increased antibiotic tolerance. Using phosphopeptide enrichment and mass spectrometry-based proteomics, we identified targets of serine-threonine phosphorylation that may regulate bacterial growth and metabolism. Together, our findings highlight the importance of phosphoregulation in mediating bacterial quiescence and antibiotic tolerance and suggest that targeting PknB or Stp might offer a future therapeutic strategy to prevent persister formation during S. aureus infections.
Collapse
Affiliation(s)
- Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sanne Hertegonne
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Judith Bergada-Pijuan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sandro Pereira
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lies Van Gestel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Julian Bär
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clément Vulin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sibylle Pfammatter
- Functional Genomics Center Zurich, ETH/University of Zurich, Zurich, Switzerland
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian R Monk
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Chaudhary R, Mishra S, Maurya GK, Rajpurohit YS, Misra HS. FtsZ phosphorylation brings about growth arrest upon DNA damage in Deinococcus radiodurans. FASEB Bioadv 2023; 5:27-42. [PMID: 36643897 PMCID: PMC9832530 DOI: 10.1096/fba.2022-00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
The polymerization/depolymerization dynamics of FtsZ play a pivotal role in cell division in the majority of the bacteria. Deinococcus radiodurans, a radiation-resistant bacterium, shows an arrest of growth in response to DNA damage with no change in the level of FtsZ. This bacterium does not deploy LexA/RecA type of DNA damage response and cell cycle regulation, and its genome does not encode SulA homologues of Escherichia coli, which attenuate FtsZ functions in response to DNA damage in other bacteria. A radiation-responsive Ser/Thr quinoprotein kinase (RqkA), characterized for its role in radiation resistance in this bacterium, could phosphorylate several cognate proteins, including FtsZ (drFtsZ) at Serine 235 (S235) and Serine 335 (S335) residues. Here, we reported the detailed characterization of S235 and S335 phosphorylation effects in the regulation of drFtsZ functions and demonstrated that the phospho-mimetic replacements of these residues in drFtsZ had grossly affected its functions that could result in cell cycle arrest in response to DNA damage in D. radiodurans. Interestingly, the phospho-ablative replacements were found to be nearly similar to drFtsZ, whereas the phospho-mimetic mutant lost the wild-type protein's signature characteristics, including its dynamics under normal conditions. The kinetics of post-bleaching recovery for drFtsZ and phospho-mimetic mutant were nearly similar at 2 h post-irradiation recovery but were found to be different under normal conditions. These results highlighted the role of S/T phosphorylation in the regulation of drFtsZ functions and cell cycle arrest in response to DNA damage, which is demonstrated for the first time, in any bacteria.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | - Shruti Mishra
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | | | - Yogendra S. Rajpurohit
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| | - Hari S. Misra
- Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia
- Life SciencesHomi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
13
|
Yagüe P, Willemse J, Xiao X, Zhang L, Manteca A, van Wezel GP. FtsZ phosphorylation pleiotropically affects Z-ladder formation, antibiotic production, and morphogenesis in Streptomyces coelicolor. Antonie Van Leeuwenhoek 2023; 116:1-19. [PMID: 36383329 PMCID: PMC9823044 DOI: 10.1007/s10482-022-01778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The GTPase FtsZ forms the cell division scaffold in bacteria, which mediates the recruitment of the other components of the divisome. Streptomycetes undergo two different forms of cell division. Septa without detectable peptidoglycan divide the highly compartmentalised young hyphae during early vegetative growth, and cross-walls are formed that dissect the hyphae into long multinucleoid compartments in the substrate mycelium, while ladders of septa are formed in the aerial hyphae that lead to chains of uninucleoid spores. In a previous study, we analysed the phosphoproteome of Streptomyces coelicolor and showed that FtsZ is phosphorylated at Ser 317 and Ser389. Substituting Ser-Ser for either Glu-Glu (mimicking phosphorylation) or Ala-Ala (mimicking non-phosphorylation) hinted at changes in antibiotic production. Here we analyse development, colony morphology, spore resistance, and antibiotic production in FtsZ knockout mutants expressing FtsZ alleles mimicking Ser319 and Ser387 phosphorylation and non-phosphorylation: AA (no phosphorylation), AE, EA (mixed), and EE (double phosphorylation). The FtsZ-eGFP AE, EA and EE alleles were not able to form observable FtsZ-eGFP ladders when they were expressed in the S. coelicolor wild-type strain, whereas the AA allele could form apparently normal eGFP Z-ladders. The FtsZ mutant expressing the FtsZ EE or EA or AE alleles is able to sporulate indicating that the mutant alleles are able to form functional Z-rings leading to sporulation when the wild-type FtsZ gene is absent. The four mutants were pleiotropically affected in colony morphogenesis, antibiotic production, substrate mycelium differentiation and sporulation (sporulation timing and spore resistance) which may be an indirect result of the effect in sporulation Z-ladder formation. Each mutant showed a distinctive phenotype in antibiotic production, single colony morphology, and sporulation (sporulation timing and spore resistance) indicating that the different FtsZ phosphomimetic alleles led to different phenotypes. Taken together, our data provide evidence for a pleiotropic effect of FtsZ phosphorylation in colony morphology, antibiotic production, and sporulation.
Collapse
Affiliation(s)
- Paula Yagüe
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Joost Willemse
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Xiansha Xiao
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Le Zhang
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Angel Manteca
- grid.10863.3c0000 0001 2164 6351Departamento de Biología Funcional e IUOPA, Área de Microbiología, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gilles P. van Wezel
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| |
Collapse
|
14
|
Characterization of DNA Processing Protein A (DprA) of the Radiation-Resistant Bacterium Deinococcus radiodurans. Microbiol Spectr 2022; 10:e0347022. [PMID: 36453941 PMCID: PMC9769556 DOI: 10.1128/spectrum.03470-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Environmental DNA uptake by certain bacteria and its integration into their genome create genetic diversity and new phenotypes. DNA processing protein A (DprA) is part of a multiprotein complex and facilitates the natural transformation (NT) phenotype in most bacteria. Deinococcus radiodurans, an extremely radioresistant bacterium, is efficient in NT, and its genome encodes nearly all of the components of the natural competence complex. Here, we have characterized the DprA protein of this bacterium (DrDprA) for the known characteristics of DprA proteins of other bacteria and the mechanisms underlying the DNA-RecA interaction. DrDprA has three domains. In vitro studies showed that purified recombinant DrDprA binds to both single-strand DNA (ssDNA) and double-strand DNA (dsDNA) and is able to protect ssDNA from nucleolytic degradation. DrDprA showed a strong interaction with DrRecA and facilitated RecA-catalyzed functions in vivo. Mutational studies identified DrDprA amino acid residues crucial for oligomerization, the interaction with DrRecA, and DNA binding. Furthermore, we showed that both oligomerization and DNA binding properties of DrDprA are integral to its support of the DrRecA-catalyzed strand exchange reaction (SER) in vitro. Together, these data suggested that DrDprA is largely structurally conserved with other DprA homologs but shows some unique structure-function features like the existence of an additional C-terminal Drosophila melanogaster Miasto-like protein 1 (DML1) domain, equal affinities for ssDNA and dsDNA, and the collective roles of oligomerization and DNA binding properties in supporting DrRecA functions. IMPORTANCE Bacteria can take up extracellular DNA (eDNA) by natural transformation (NT). Many bacteria, including Deinococcus radiodurans, have constitutive competence systems and can take up eDNA throughout their growth phase. DprA (DNA processing protein A) is a transformation-specific recombination mediator protein (RMP) that plays a role in bacterial NT, and the absence of this gene significantly reduces the transformation efficiencies of both chromosomal and plasmid DNA. NT helps bacteria survive under adverse conditions and contributes to genetic diversity in bacteria. The present work describes the characterization of DprA from D. radiodurans and will add to the existing knowledge of DprA biology.
Collapse
|
15
|
FtsK, a DNA Motor Protein, Coordinates the Genome Segregation and Early Cell Division Processes in Deinococcus radiodurans. mBio 2022; 13:e0174222. [PMID: 36300930 PMCID: PMC9764985 DOI: 10.1128/mbio.01742-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filament temperature-sensitive mutant K (FtsK)/SpoIIIE family proteins are DNA translocases known as the fastest DNA motor proteins that use ATP for their movement on DNA. Most of the studies in single chromosome-containing bacteria have established the role of FtsK in chromosome dimer resolution (CDR), connecting the bacterial chromosome segregation process with cell division. Only limited reports, however, are available on the interdependent regulation of genome segregation and cell division in multipartite genome harboring (MGH) bacteria. In this study, for the first time, we report the characterization of FtsK from the radioresistant MGH bacterium Deinococcus radiodurans R1 (drFtsK). drFtsK shows the activity characteristics of a typical FtsK/SpoIIIE/Tra family. It stimulates the site-specific recombination catalyzed by Escherichia coli tyrosine recombinases. drFtsK interacts with various cell division and genome segregation proteins of D. radiodurans. Microscopic examination of different domain deletion mutants of this protein reveals alterations in cellular membrane architecture and nucleoid morphology. In vivo localization studies of drFtsK-RFP show that it forms multiple foci on nucleoid as well as on the membrane with maximum density on the septum. drFtsK coordinates its movement with nucleoid separation. The alignment of its foci shifts from old to new septum indicating its cellular dynamics with the FtsZ ring during the cell division process. Nearly, similar positional dynamicity of FtsK was observed in cells recovering from gamma radiation exposure. These results suggest that FtsK forms a part of chromosome segregation, cell envelope, and cell division machinery in D. radiodurans. IMPORTANCE Deinococcus radiodurans show extraordinary resistance to gamma radiation. It is polyploid and harbors a multipartite genome comprised of 2 chromosomes and 2 plasmids, packaged in a doughnut-shaped toroidal nucleoid. Very little is known about how the tightly packed genome is accurately segregated and the next divisional plane is determined. Filament temperature-sensitive mutant K (FtsK), a multifunctional protein, helps in pumping the septum-trapped DNA in several bacteria. Here, we characterized FtsK of D. radiodurans R1 (drFtsK) for the first time and showed it to be an active protein. The absence of drFtsK causes many defects in morphology at both cellular and nucleoid levels. The compact packaging of the deinococcal genome and cell membrane formation is hindered in ftsK mutants. In vivo drFtsK is dynamic, forms foci on both nucleoid and septum, and coordinates with FtsZ for the next cell division. Thus, drFtsK role in maintaining the normal genome phenotype and cell division in D. radiodurans is suggested.
Collapse
|
16
|
Alonso-Fernández S, Arribas-Díez I, Fernández-García G, González-Quiñónez N, Jensen ON, Manteca A. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs. J Proteomics 2022; 269:104719. [PMID: 36089190 DOI: 10.1016/j.jprot.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/12/2022]
Abstract
Streptomycetes are multicellular gram-positive bacteria that produce many bioactive compounds, including antibiotics, antitumorals and immunosuppressors. The Streptomyces phosphoproteome remains largely uncharted even though protein phosphorylation at Ser/Thr/Tyr is known to modulate morphological differentiation and specialized metabolic processes. We here expand the S. coelicolor phosphoproteome by optimised immobilized zirconium (IV) affinity chromatography and mass spectrometry to identify phosphoproteins at the vegetative and sporulating stages. We mapped 361 phosphorylation sites (41% pSer, 56.2% pThr, 2.8% pTyr) and discovered four novel Thr phosphorylation motifs ("Kxxxx(pT)xxxxK", "DxE(pT)", "D(pT)" and "Exxxxx(pT)") in 351 phosphopeptides derived from 187 phosphoproteins. We identified 154 novel phosphoproteins, thereby almost doubling the number of experimentally verified Streptomyces phosphoproteins. Novel phosphoproteins included cell division proteins (FtsK, CrgA) and specialized metabolism regulators (ArgR, AfsR, CutR and HrcA) that were differentially phosphorylated in the vegetative and in the antibiotic producing sporulating stages. Phosphoproteins involved in primary metabolism included 27 novel ribosomal proteins that were phosphorylated during the vegetative stage. Phosphorylation of these proteins likely participate in the intricate and incompletely understood regulation of Streptomyces development and secondary metabolism. We conclude that Zr(IV)-IMAC is an efficient and sensitive method to study protein phosphorylation and regulation in bacteria and enhance our understanding of bacterial signalling. SIGNIFICANCE: Two thirds of the secondary metabolites used in clinic, especially antibiotics, were discovered in Streptomyces strains. Antibiotic resistance became one of the major challenges in clinic, and new antibiotics are urgently required in clinic. Next-generation sequencing analyses revealed that streptomycetes harbour many cryptic secondary metabolite pathways, i.e. pathways not expressed in the laboratory. Secondary metabolism is tightly connected with hypha differentiation and sporulation, and understanding Streptomyces differentiation is one of the main challenges in industrial microbiology, in order to activate the expression of cryptic pathways in the laboratory. Protein phosphorylation at Ser/Thr/Tyr modulates development and secondary metabolism, but the Streptomyces phosphoproteome is still largely uncharted. Previous S. coelicolor phosphoproteomic studies used TiO2 affinity enrichment and LC-MS/MS identifying a total of 184 Streptomyces phosphoproteins. Here, we used by first time zirconium (IV) affinity chromatography and mass spectrometry, identifying 186 S. coelicolor phosphoproteins. Most of these phosphoproteins (154) were not identified in previous phosphoproteomic studies using TiO2 affinity enrichment. Thereby we almost doubling the number of experimentally verified Streptomyces phosphoproteins. Zr(IV)-IMAC affinity chromatography also worked in E. coli, allowing the identification of phosphoproteins that were not identified by TiO2 affinity chromatography. We conclude that Zr(IV)-IMAC is an efficient and sensitive method for studies of protein phosphorylation and regulation in bacteria to enhance our understanding of bacterial signalling networks. Moreover, the new Streptomyces phosphoproteins identified will contribute to design further works to understand and modulate Streptomyces secondary metabolism activation.
Collapse
Affiliation(s)
- Sergio Alonso-Fernández
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio Arribas-Díez
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gemma Fernández-García
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly González-Quiñónez
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
17
|
Clostridioides difficile Phosphoproteomics Shows an Expansion of Phosphorylated Proteins in Stationary Growth Phase. mSphere 2022; 7:e0091121. [PMID: 34986318 PMCID: PMC8730811 DOI: 10.1128/msphere.00911-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylation is a posttranslational modification that can affect both housekeeping functions and virulence characteristics in bacterial pathogens. In the Gram-positive enteropathogen Clostridioides difficile, the extent and nature of phosphorylation events are poorly characterized, though a protein kinase mutant strain demonstrates pleiotropic phenotypes. Here, we used an immobilized metal affinity chromatography strategy to characterize serine, threonine, and tyrosine phosphorylation in C. difficile. We find limited protein phosphorylation in the exponential growth phase but a sharp increase in the number of phosphopeptides after the onset of the stationary growth phase. Our approach identifies expected targets and phosphorylation sites among the more than 1,500 phosphosites, including the protein kinase PrkC, the anti-sigma-F factor antagonist (SpoIIAA), the anti-sigma-B factor antagonist (RsbV), and HPr kinase/phosphorylase (HprK). Analysis of high-confidence phosphosites shows that phosphorylation on serine residues is most common, followed by threonine and tyrosine phosphorylation. This work forms the basis for a further investigation into the contributions of individual kinases to the overall phosphoproteome of C. difficile and the role of phosphorylation in C. difficile physiology and pathogenesis. IMPORTANCE In this paper, we present a comprehensive analysis of protein phosphorylation in the Gram-positive enteropathogen Clostridioides difficile. To date, only limited evidence on the role of phosphorylation in the regulation of this organism has been published; the current study is expected to form the basis for research on this posttranslational modification in C. difficile.
Collapse
|
18
|
Hu Q, Yao L, Liao X, Zhang LS, Li HT, Li TT, Jiang QG, Tan MF, Li L, Draheim RR, Huang Q, Zhou R. Comparative Phenotypic, Proteomic, and Phosphoproteomic Analysis Reveals Different Roles of Serine/Threonine Phosphatase and Kinase in the Growth, Cell Division, and Pathogenicity of Streptococcus suis. Microorganisms 2021; 9:microorganisms9122442. [PMID: 34946045 PMCID: PMC8707513 DOI: 10.3390/microorganisms9122442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Eukaryote-like serine/threonine kinases (STKs) and cognate phosphatases (STPs) comprise an important regulatory system in many bacterial pathogens. The complexity of this regulatory system has not been fully understood due to the presence of multiple STKs/STPs in many bacteria and their multiple substrates involved in many different physiological and pathogenetic processes. Streptococci are the best materials for the study due to a single copy of the gene encoding STK and its cognate STP. Although several studies have been done to investigate the roles of STK and STP in zoonotic Streptococcus suis, respectively, few studies were performed on the coordinated regulatory roles of this system. In this study, we carried out a systemic study on STK/STP in S. suis by using a comparative phenotypic, proteomic, and phosphoproteomic analysis. Mouse infection assays revealed that STK played a much more important role in S. suis pathogenesis than STP. The ∆stk and ∆stp∆stk strains, but not ∆stp, showed severe growth retardation. Moreover, both ∆stp and ∆stk strains displayed defects in cell division, but they were abnormal in different ways. The comparative proteomics and phosphoproteomics revealed that deletion of stk or stp had a significant influence on protein expression. Interestingly, more virulence factors were found to be downregulated in ∆stk than ∆stp. In ∆stk strain, a substantial number of the proteins with a reduced phosphorylation level were involved in cell division, energy metabolism, and protein translation. However, only a few proteins showed increased phosphorylation in ∆stp, which also included some proteins related to cell division. Collectively, our results show that both STP and STK are critical regulatory proteins for S. suis and that STK seems to play more important roles in growth, cell division, and pathogenesis.
Collapse
Affiliation(s)
- Qiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Lun Yao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Xia Liao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Liang-Sheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Hao-Tian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Ting-Ting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Qing-Gen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
| | - Mei-Fang Tan
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China;
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| | - Roger R. Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK;
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Q.H.); (L.Y.); (X.L.); (L.-S.Z.); (H.-T.L.); (T.-T.L.); (Q.-G.J.); (L.L.)
- Cooperative Innovation Center of Sustainable Pig Production, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (Q.H.); (R.Z.)
| |
Collapse
|
19
|
Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021; 30:553-566. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
20
|
Rajpurohit YS, Sharma DK, Misra HS. Involvement of Serine / Threonine protein kinases in DNA damage response and cell division in bacteria. Res Microbiol 2021; 173:103883. [PMID: 34624492 DOI: 10.1016/j.resmic.2021.103883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
The roles of Serine/Threonine protein kinases (STPKs) in bacterial physiology, including bacterial responses to nutritional stresses and under pathogenesis have been well documented. STPKs roles in bacterial cell cycle regulation and DNA damage response have not been much emphasized, possibly because the LexA/RecA type SOS response became the synonym to DNA damage response and cell cycle regulation in bacteria. This review summarizes current knowledge of STPKs genetics, domain organization, and their roles in DNA damage response and cell division regulation in bacteria.
Collapse
Affiliation(s)
- Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| |
Collapse
|
21
|
DivIVA Regulates Its Expression and the Orientation of New Septum Growth in Deinococcus radiodurans. J Bacteriol 2021; 203:e0016321. [PMID: 34031039 DOI: 10.1128/jb.00163-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In rod-shaped Gram-negative bacteria, FtsZ localization at midcell position is regulated by the gradient of MinCDE complex across the poles. In round-shaped bacteria, which lack predefined poles, the next plane of cell division is perpendicular to the previous plane, and determination of the FtsZ assembly site is still intriguing. Deinococcus radiodurans, a coccus bacterium, is characterized by its extraordinary resistance to DNA damage. DivIVA, a putative component of the Min system in this bacterium, interacts with cognate cell division and genome segregation proteins. Here, we report that deletion of a chromosomal copy of DivIVA was possible only when the wild-type copy of DivIVA was expressed in trans on a plasmid. However, deletion of the C-terminal domain (CTD) of DivIVA (CTD mutant) was possible but produced distinguishable phenotypes, like smaller cells, slower growth, and tilted septum orientation, in D. radiodurans. In trans expression of DivIVA in the CTD mutant could restore these features of the wild type. Interestingly, the overexpression of DivIVA led to delayed separation of tetrads from an octet state in both trans-complemented divIVA-mutant and wild-type cells. The CTD mutant showed upregulation of the yggS-divIVAN operon. Both the wild type and CTD mutant formed FtsZ foci; however, unlike wild type, the position of foci in the mutant cells was found to be away from conjectural midcell position in cocci. Notably, DivIVA-red fluorescent protein (DivIVA-RFP) localizes to the septum during cell division at the new division site. These results suggested that DivIVA is an essential protein in D. radiodurans, and its C-terminal domain plays an important role in the regulation of its expression and orientation of new septal growth in this bacterium. IMPORTANCE In rod-shaped Gram-negative bacteria, the midcell position for binary fission is relatively easy to model. In cocci that do not have predefined poles, the plane of next cell division is shown to be perpendicular to the previous plane. However, the molecular basis of perpendicularity is not known in cocci. The DivIVA protein of Deinococcus radiodurans, a coccus bacterium, physically interacts with the septum and establishes macromolecular interactions with genome segregation proteins through its N-terminal domain and with MinC through the C-terminal domain. Here, we have brought forth some evidence to suggest that DivIVA is essential for growth and plays an important role in cell polarity determination, and its C-terminal domain plays a crucial role in the growth of new septa in the correct orientation as well as in the regulation of DivIVA expression.
Collapse
|
22
|
Rajpurohit YS, Sharma DK, Misra HS. PprA Protein Inhibits DNA Strand Exchange and ATP Hydrolysis of Deinococcus RecA and Regulates the Recombination in Gamma-Irradiated Cells. Front Cell Dev Biol 2021; 9:636178. [PMID: 33959605 PMCID: PMC8093518 DOI: 10.3389/fcell.2021.636178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
23
|
Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Toxins (Basel) 2021; 13:toxins13020083. [PMID: 33499260 PMCID: PMC7911819 DOI: 10.3390/toxins13020083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The adenylate cyclase toxin, CyaA, is one of the key virulent factors produced by Bordetella pertussis, the causative agent of whooping cough. This toxin primarily targets innate immunity to facilitate bacterial colonization of the respiratory tract. CyaA exhibits several remarkable characteristics that have been exploited for various applications in vaccinology and other biotechnological purposes. CyaA has been engineered as a potent vaccine vehicle to deliver antigens into antigen-presenting cells, while the adenylate cyclase catalytic domain has been used to design a robust genetic assay for monitoring protein-protein interactions in bacteria. These two biotechnological applications are briefly summarized in this chapter.
Collapse
|
24
|
Maurya GK, Chaudhary R, Pandey N, Misra HS. Molecular insights into replication initiation in a multipartite genome harboring bacterium Deinococcus radiodurans. J Biol Chem 2021; 296:100451. [PMID: 33626388 PMCID: PMC7988490 DOI: 10.1016/j.jbc.2021.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Neha Pandey
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, University of Mumbai, Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
25
|
Kota S, Chaudhary R, Mishra S, Misra HS. Topoisomerase IB interacts with genome segregation proteins and is involved in multipartite genome maintenance in Deinococcus radiodurans. Microbiol Res 2020; 242:126609. [PMID: 33059113 DOI: 10.1016/j.micres.2020.126609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Deinococcus radiodurans, an extremophile, resistant to many abiotic stresses including ionizing radiation, has 2 type I topoisomerases (drTopo IA and drTopo IB) and one type II topoisomerase (DNA gyrase). The role of drTopo IB in guanine quadruplex DNA (G4 DNA) metabolism was demonstrated earlier in vitro. Here, we report that D. radiodurans cells lacking drTopo IB (ΔtopoIB) show sensitivity to G4 DNA binding drug (NMM) under normal growth conditions. The activity of G4 motif containing promoters like mutL and recQ was reduced in the presence of NMM in mutant cells. In mutant, the percentage of anucleate cells was more while the copy number of genome elements were less as compared to wild type. Protein-protein interaction studies showed that drTopo IB interacts with genome segregation and DNA replication initiation (DnaA) proteins. The typical patterns of cellular localization of GFP-PprA were affected in the mutant cells. Microscopic examination of D. radiodurans cells expressing drTopo IB-RFP showed its localization on nucleoid forming a streak parallel to the old division septum and perpendicular to newly formed septum. These results together suggest the role of drTopo IB in genome maintenance in this bacterium.
Collapse
Affiliation(s)
- Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
26
|
Joshi SR, Jagtap S, Basu B, Deobagkar DD, Ghosh P. Construction, analysis and validation of co-expression network to understand stress adaptation in Deinococcus radiodurans R1. PLoS One 2020; 15:e0234721. [PMID: 32579573 PMCID: PMC7314050 DOI: 10.1371/journal.pone.0234721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/02/2020] [Indexed: 01/12/2023] Open
Abstract
Systems biology based approaches have been effectively utilized to mine high throughput data. In the current study, we have performed system-level analysis for Deinococcus radiodurans R1 by constructing a gene co-expression network based on several microarray datasets available in the public domain. This condition-independent network was constructed by Weighted Gene Co-expression Network Analysis (WGCNA) with 61 microarray samples from 9 different experimental conditions. We identified 13 co-expressed modules, of which, 11 showed functional enrichments of one or more pathway/s or biological process. Comparative analysis of differentially expressed genes and proteins from radiation and desiccation stress studies with our co-expressed modules revealed the association of cyan with radiation response. Interestingly, two modules viz darkgreen and tan was associated with radiation as well as desiccation stress responses. The functional analysis of these modules showed enrichment of pathways important for adaptation of radiation or desiccation stress. To decipher the regulatory roles of these stress responsive modules, we identified transcription factors (TFs) and then calculated a Biweight mid correlation between modules hub gene and the identified TFs. We obtained 7 TFs for radiation and desiccation responsive modules. The expressions of 3 TFs were validated in response to gamma radiation using qRT-PCR. Along with the TFs, selected close neighbor genes of two important TFs, viz., DR_0997 (CRP) and DR_2287 (AsnC family transcriptional regulator) in the darkgreen module were also validated. In our network, among 13 hub genes associated with 13 modules, the functionality of 5 hub genes which are annotated as hypothetical proteins (hypothetical hub genes) in D. radiodurans genome has been revealed. Overall the study provided a better insight of pathways and regulators associated with relevant DNA damaging stress response in D. radiodurans.
Collapse
Affiliation(s)
- Suraj R. Joshi
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Surabhi Jagtap
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepti D. Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
- * E-mail: ,
| |
Collapse
|
27
|
Goals and Challenges in Bacterial Phosphoproteomics. Int J Mol Sci 2019; 20:ijms20225678. [PMID: 31766156 PMCID: PMC6888350 DOI: 10.3390/ijms20225678] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Reversible protein phosphorylation at serine, threonine and tyrosine is a well-known dynamic post-translational modification with stunning regulatory and signalling functions in eukaryotes. Shotgun phosphoproteomic analyses revealed that this post-translational modification is dramatically lower in bacteria than in eukaryotes. However, Ser/Thr/Tyr phosphorylation is present in all analysed bacteria (24 eubacteria and 1 archaea). It affects central processes, such as primary and secondary metabolism development, sporulation, pathogenicity, virulence or antibiotic resistance. Twenty-nine phosphoprotein orthologues were systematically identified in bacteria: ribosomal proteins, enzymes from glycolysis and gluconeogenesis, elongation factors, cell division proteins, RNA polymerases, ATP synthases and enzymes from the citrate cycle. While Ser/Thr/Tyr phosphorylation exists in bacteria, there is a consensus that histidine phosphorylation is the most abundant protein phosphorylation in prokaryotes. Unfortunately, histidine shotgun phosphorproteomics is not possible due to the reduced phosphohistidine half-life under the acidic pH conditions used in standard LC-MS/MS analysis. However, considering the fast and continuous advances in LC-MS/MS-based phosphoproteomic methodologies, it is expected that further innovations will allow for the study of His phosphoproteomes and a better coverage of bacterial phosphoproteomes. The characterisation of the biological role of bacterial Ser/Thr/Tyr and His phosphorylations might revolutionise our understanding of prokaryotic physiology.
Collapse
|
28
|
Abstract
Reproduction in the bacterial kingdom predominantly occurs through binary fission-a process in which one parental cell is divided into two similarly sized daughter cells. How cell division, in conjunction with cell elongation and chromosome segregation, is orchestrated by a multitude of proteins has been an active area of research spanning the past few decades. Together, the monumental endeavors of multiple laboratories have identified several cell division and cell shape regulators as well as their underlying regulatory mechanisms in rod-shaped Escherichia coli and Bacillus subtilis, which serve as model organisms for Gram-negative and Gram-positive bacteria, respectively. Yet our understanding of bacterial cell division and morphology regulation is far from complete, especially in noncanonical and non-rod-shaped organisms. In this review, we focus on two proteins that are highly conserved in Gram-positive organisms, DivIVA and its homolog GpsB, and attempt to summarize the recent advances in this area of research and discuss their various roles in cell division, cell growth, and chromosome segregation in addition to their interactome and posttranslational regulation.
Collapse
|
29
|
Characterisation of ParB encoded on multipartite genome in Deinococcus radiodurans and their roles in radioresistance. Microbiol Res 2019; 223-225:22-32. [DOI: 10.1016/j.micres.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/27/2019] [Accepted: 03/16/2019] [Indexed: 01/05/2023]
|
30
|
ParA proteins of secondary genome elements cross-talk and regulate radioresistance through genome copy number reduction in Deinococcus radiodurans. Biochem J 2019; 476:909-930. [DOI: 10.1042/bcj20180799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
Abstract
Deinococcus radiodurans, an extremely radioresistant bacterium has a multipartite genome system and ploidy. Mechanisms underlying such types of bacterial genome maintenance and its role in extraordinary radioresistance are not known in this bacterium. Chromosome I (Chr I), chromosome II (Chr II) and megaplasmid (Mp) encode its own set of genome partitioning proteins. Here, we have characterized P-loop ATPases of Chr II (ParA2) and Mp (ParA3) and their roles in the maintenance of genome copies and extraordinary radioresistance. Purified ParA2 and ParA3 showed nearly similar polymerization kinetics and interaction patterns with DNA. Electron microscopic examination of purified proteins incubated with DNA showed polymerization on nicked circular dsDNA. ParA2 and ParA3 showed both homotypic and heterotypic interactions to each other, but not with ParA1 (ParA of Chr I). Similarly, ParA2 and ParA3 interacted with ParB2 and ParB3 but not with ParB1 in vivo. ParB2 and ParB3 interaction with cis-elements located upstream to the corresponding parAB operon was found to be sequence-specific. Unlike single mutant of parA2 and parA3, their double mutant (ΔparA2ΔParA3) affected copy number of cognate genome elements and resistance to γ-radiation as well as hydrogen peroxide in this bacterium. These results suggested that ParA2 and ParA3 are DNA-binding ATPases producing higher order polymers on DNA and are functionally redundant in the maintenance of secondary genome elements in D. radiodurans. The findings also suggest the involvement of secondary genome elements such as Chr II and Mp in the extraordinary radioresistance of D. radiodurans.
Collapse
|
31
|
Sharma DK, Siddiqui MQ, Gadewal N, Choudhary RK, Varma AK, Misra HS, Rajpurohit YS. Phosphorylation of deinococcal RecA affects its structural and functional dynamics implicated for its roles in radioresistance of Deinococcus radiodurans. J Biomol Struct Dyn 2019; 38:114-123. [PMID: 30688163 DOI: 10.1080/07391102.2019.1568916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deinococcus RecA (DrRecA) protein is a key repair enzyme and contributes to efficient DNA repair of Deinococcus radiodurans. Phosphorylation of DrRecA at Y77 (tyrosine 77) and T318 (threonine 318) residues modifies the structural and conformational switching that impart the efficiency and activity of DrRecA. Dynamics comparisons of DrRecA with its phosphorylated analogues support the idea that phosphorylation of Y77 and T318 sites could change the dynamics and conformation plasticity of DrRecA. Furthermore, docking studies showed that phosphorylation increases the binding preference of DrRecA towards dATP versus ATP and for double-strand DNA versus single-strand DNA. This work supporting the idea that phosphorylation can modulate the crucial functions of this protein and having good concordance with the experimental data. AbbreviationsDrRecADeinococcus RecADSBDNA double-strand breakshDNAheteroduplex DNASTYPKserine/threonine/tyrosine protein kinaseT318threonine 318Y77tyrosine 77Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Nikhil Gadewal
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Rajan Kumar Choudhary
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Ashok Kumar Varma
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.,Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.,Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|