1
|
Davis KP, Morales Y, Ende RJ, Peters R, McCabe AL, Mecsas J, Aldridge BB. Critical role of growth medium for detecting drug interactions in Gram-negative bacteria that model in vivo responses. mBio 2024; 15:e0015924. [PMID: 38364199 PMCID: PMC10936441 DOI: 10.1128/mbio.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
The rise in infections caused by multidrug-resistant (MDR) bacteria has necessitated a variety of clinical approaches, including the use of antibiotic combinations. Here, we tested the hypothesis that drug-drug interactions vary in different media, and determined which in vitro models best predict drug interactions in the lungs. We systematically studied pair-wise antibiotic interactions in three different media, CAMHB, (a rich lab medium standard for antibiotic susceptibility testing), a urine mimetic medium (UMM), and a minimal medium of M9 salts supplemented with glucose and iron (M9Glu) with three Gram-negative ESKAPE pathogens, Acinetobacter baumannii (Ab), Klebsiella pneumoniae (Kp), and Pseudomonas aeruginosa (Pa). There were pronounced differences in responses to antibiotic combinations between the three bacterial species grown in the same medium. However, within species, PaO1 responded to drug combinations similarly when grown in all three different media, whereas Ab17978 and other Ab clinical isolates responded similarly when grown in CAMHB and M9Glu medium. By contrast, drug interactions in Kp43816, and other Kp clinical isolates poorly correlated across different media. To assess whether any of these media were predictive of antibiotic interactions against Kp in the lungs of mice, we tested three antibiotic combination pairs. In vitro measurements in M9Glu, but not rich medium or UMM, predicted in vivo outcomes. This work demonstrates that antibiotic interactions are highly variable across three Gram-negative pathogens and highlights the importance of growth medium by showing a superior correlation between in vitro interactions in a minimal growth medium and in vivo outcomes. IMPORTANCE Drug-resistant bacterial infections are a growing concern and have only continued to increase during the SARS-CoV-2 pandemic. Though not routinely used for Gram-negative bacteria, drug combinations are sometimes used for serious infections and may become more widely used as the prevalence of extremely drug-resistant organisms increases. To date, reliable methods are not available for identifying beneficial drug combinations for a particular infection. Our study shows variability across strains in how drug interactions are impacted by growth conditions. It also demonstrates that testing drug combinations in tissue-relevant growth conditions for some strains better models what happens during infection and may better inform combination therapy selection.
Collapse
Affiliation(s)
- Kathleen P. Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Yoelkys Morales
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rachel J. Ende
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Ryan Peters
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Anne L. McCabe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|
2
|
Lennard PR, Hiemstra PS, Nibbering PH. Complementary Activities of Host Defence Peptides and Antibiotics in Combating Antimicrobial Resistant Bacteria. Antibiotics (Basel) 2023; 12:1518. [PMID: 37887219 PMCID: PMC10604037 DOI: 10.3390/antibiotics12101518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Due to their ability to eliminate antimicrobial resistant (AMR) bacteria and to modulate the immune response, host defence peptides (HDPs) hold great promise for the clinical treatment of bacterial infections. Whereas monotherapy with HDPs is not likely to become an effective first-line treatment, combinations of such peptides with antibiotics can potentially provide a path to future therapies for AMR infections. Therefore, we critically reviewed the recent literature regarding the antibacterial activity of combinations of HDPs and antibiotics against AMR bacteria and the approaches taken in these studies. Of the 86 studies compiled, 56 featured a formal assessment of synergy between agents. Of the combinations assessed, synergistic and additive interactions between HDPs and antibiotics amounted to 84.9% of the records, while indifferent and antagonistic interactions accounted for 15.1%. Penicillin, aminoglycoside, fluoro/quinolone, and glycopeptide antibiotic classes were the most frequently documented as interacting with HDPs, and Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecium were the most reported bacterial species. Few studies formally evaluated the effects of combinations of HDPs and antibiotics on bacteria, and even fewer assessed such combinations against bacteria within biofilms, in animal models, or in advanced tissue infection models. Despite the biases of the current literature, the studies suggest that effective combinations of HDPs and antibiotics hold promise for the future treatment of infections caused by AMR bacteria.
Collapse
Affiliation(s)
- Patrick R. Lennard
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FE, UK
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| |
Collapse
|
3
|
Heithoff DM, Barnes V L, Mahan SP, Fried JC, Fitzgibbons LN, House JK, Mahan MJ. Re-evaluation of FDA-approved antibiotics with increased diagnostic accuracy for assessment of antimicrobial resistance. Cell Rep Med 2023; 4:101023. [PMID: 37116500 PMCID: PMC10213814 DOI: 10.1016/j.xcrm.2023.101023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/16/2023] [Accepted: 04/05/2023] [Indexed: 04/30/2023]
Abstract
Accurate assessment of antibiotic susceptibility is critical for treatment of antimicrobial resistant (AMR) infections. Here, we examine whether antimicrobial susceptibility testing in media more physiologically representative of in vivo conditions improves prediction of clinical outcome relative to standard bacteriologic medium. This analysis reveals that ∼15% of minimum inhibitory concentration (MIC) values obtained in physiologic media predicted a change in susceptibility that crossed a clinical breakpoint used to categorize patient isolates as susceptible or resistant. The activities of antibiotics having discrepant results in different media were evaluated in murine sepsis models. Testing in cell culture medium improves the accuracy by which MIC assays predict in vivo efficacy. This analysis identifies several antibiotics for treatment of AMR infections that standard testing failed to identify and those that are ineffective despite indicated use by standard testing. Methods with increased diagnostic accuracy mitigate the AMR crisis via utilizing existing agents and optimizing drug discovery.
Collapse
Affiliation(s)
- Douglas M Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Lucien Barnes V
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Scott P Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jeffrey C Fried
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA; Department of Pulmonary and Critical Care Medicine, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - Lynn N Fitzgibbons
- Department of Medical Education, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA; Division of Infectious Diseases, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - John K House
- Faculty of Science, School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia.
| | - Michael J Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
4
|
Treatment of Bacterial Infections with β-Lactams: Cooperation with Innate Immunity. Infect Immun 2023; 91:e0050322. [PMID: 36695576 PMCID: PMC9933636 DOI: 10.1128/iai.00503-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
β-Lactams are the most widely prescribed antibiotics used for the control and treatment of bacterial infections. The direct effect of β-lactams on bacteria is well studied worldwide. In the context of infections and as a consequence of their direct activity against the pathogen, β-lactams also regulate antibacterial immune responses. This knowledge has led to the theorem that the effectiveness of β-lactam treatment results from the synergy between the drug and the immune response. Key players in this immune response, with an essential role in the clearance of live and dead bacteria, are the myeloid cells. In this review, we summarize the data that shed light on how β-lactams interact with myeloid cells during bacterial infection treatment.
Collapse
|
5
|
C S, G. R R, L. F L, M.C.G DR, N.B C, S.C D, O. L F. Advances and perspectives for antimicrobial peptide and combinatory therapies. Front Bioeng Biotechnol 2022; 10:1051456. [PMID: 36578509 PMCID: PMC9791095 DOI: 10.3389/fbioe.2022.1051456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) have shown cell membrane-directed mechanisms of action. This specificity can be effective against infectious agents that have acquired resistance to conventional drugs. The AMPs' membrane-specificity and their great potential to combat resistant microbes has brought hope to the medical/therapeutic scene. The high death rate worldwide due to antimicrobial resistance (AMR) has pushed forward the search for new molecules and product developments, mainly antibiotics. In the current scenario, other strategies including the association of two or more drugs have contributed to the treatment of difficult-to-treat infectious diseases, above all, those caused by bacteria. In this context, the synergistic action of AMPs associated with current antibiotic therapy can bring important results for the production of new and effective drugs to overcome AMR. This review presents the advances obtained in the last 5 years in medical/antibiotic therapy, with the use of products based on AMPs, as well as perspectives on the potentialized effects of current drugs combined with AMPs for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Santos C
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande, Brazil
| | - Rodrigues G. R
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - Lima L. F
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - dos Reis M.C.G
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
| | - Cunha N.B
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Faculdade de Agronomia e Medicina Veterinária (FAV), Universidade de Brasília (UnB), Brasília, Brazil
| | - Dias S.C
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Programa de Pós-Graduação Em Biologia Animal, Universidade de Brasília (UnB), Brasília, Brazil
| | - Franco O. L
- S-Inova Biotech, Programa de Pós-Graduação Em Biotecnologia, Universidade Católica Dom Bosco (UCDB), Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímica (CAPB), Programa de Pós-Graduação Em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília, Brazil
- Programa de Pós-Graduação Em Patologia Molecular, Universidade de Brasília (UnB), Brasília, Brazil
| |
Collapse
|
6
|
Villanueva JA, Crooks AL, Nagy TA, Quintana JLJ, Dalebroux ZD, Detweiler CS. Salmonella enterica Infections Are Disrupted by Two Small Molecules That Accumulate within Phagosomes and Differentially Damage Bacterial Inner Membranes. mBio 2022; 13:e0179022. [PMID: 36135367 PMCID: PMC9601186 DOI: 10.1128/mbio.01790-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Gram-negative bacteria have a robust cell envelope that excludes or expels many antimicrobial agents. However, during infection, host soluble innate immune factors permeabilize the bacterial outer membrane. We identified two small molecules that exploit outer membrane damage to access the bacterial cell. In standard microbiological media, neither compound inhibited bacterial growth nor permeabilized bacterial outer membranes. In contrast, at micromolar concentrations, JAV1 and JAV2 enabled the killing of an intracellular human pathogen, Salmonella enterica serovar Typhimurium. S. Typhimurium is a Gram-negative bacterium that resides within phagosomes of cells from the monocyte lineage. Under broth conditions that destabilized the lipopolysaccharide layer, JAV2 permeabilized the bacterial inner membrane and was rapidly bactericidal. In contrast, JAV1 activity was more subtle: JAV1 increased membrane fluidity, altered reduction potential, and required more time than JAV2 to disrupt the inner membrane barrier and kill bacteria. Both compounds interacted with glycerophospholipids from Escherichia coli total lipid extract-based liposomes. JAV1 preferentially interacted with cardiolipin and partially relied on cardiolipin production for activity, whereas JAV2 generally interacted with lipids and had modest affinity for phosphatidylglycerol. In mammalian cells, neither compound significantly altered mitochondrial membrane potential at concentrations that killed S. Typhimurium. Instead, JAV1 and JAV2 became trapped within acidic compartments, including macrophage phagosomes. Both compounds improved survival of S. Typhimurium-infected Galleria mellonella larvae. Together, these data demonstrate that JAV1 and JAV2 disrupt bacterial inner membranes by distinct mechanisms and highlight how small, lipophilic, amine-substituted molecules can exploit host soluble innate immunity to facilitate the killing of intravesicular pathogens. IMPORTANCE Innovative strategies for developing new antimicrobials are needed. Combining our knowledge of host-pathogen interactions and relevant drug characteristics has the potential to reveal new approaches to treating infection. We identified two compounds with antibacterial activity specific to infection and with limited host cell toxicity. These compounds appeared to exploit host innate immunity to access the bacterium and differentially damage the bacterial inner membrane. Further, both compounds accumulated within Salmonella-containing and other acidic vesicles, a process known as lysosomal trapping, which protects the host and harms the pathogen. The compounds also increased host survival in an insect infection model. This work highlights the ability of host innate immunity to enable small molecules to act as antibiotics and demonstrates the feasibility of antimicrobial targeting of the inner membrane. Additionally, this study features the potential use of lysosomal trapping to enhance the activities of compounds against intravesicular pathogens.
Collapse
Affiliation(s)
- Joseph A. Villanueva
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Amy L. Crooks
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Toni A. Nagy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary D. Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
7
|
Holland M, Bjanes E, Nizet V, Dillon N. Bicarbonate modulates delafloxacin activity against MDR Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother 2022; 77:433-442. [PMID: 34893834 PMCID: PMC8809187 DOI: 10.1093/jac/dkab421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the utility of recently approved delafloxacin and other fluoroquinolones against leading MDR bacterial pathogens under physiologically relevant conditions. METHODS MIC and MBC assays were conducted for MDR strains of Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae in the standard antibiotic susceptibility testing medium CAMHB, amended Roswell-Park Memorial Institute tissue culture medium (RPMI+) or 20% fresh human whole blood. In vivo correlation of in vitro findings was performed in a murine P. aeruginosa pneumonia model. Mechanistic bases for the findings were explored by altering media conditions and with established fluoroquinolone accumulation assays. RESULTS Fluoroquinolone MICs were increased in RPMI+ compared with CAMHB for all four MDR pathogens. Specifically, delafloxacin MICs were increased 32-fold versus MDR S. aureus and 8-fold versus MDR P. aeruginosa. MBC assays in 20% human whole blood and a murine MDR P. aeruginosa pneumonia model both confirmed that delafloxacin activity was reduced under physiological conditions. Bicarbonate (HCO3-), a key component of host physiology found in RPMI+ but absent from CAMHB, dictated delafloxacin susceptibility in CAMHB and RPMI+ by impairing its intracellular accumulation. CONCLUSIONS Standard in vitro antibiotic susceptibility testing conditions overpredicted the effectiveness of delafloxacin against MDR pathogens by failing to capture the role of the biological buffer HCO3- to impair delafloxacin accumulation. This work showcases limitations of our current antibiotic susceptibility testing paradigm and highlights the importance of understanding host microenvironmental conditions that impact true clinical efficacy.
Collapse
Affiliation(s)
- Mische Holland
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
| | - Elisabet Bjanes
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), UC San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, UC San Diego, La Jolla, CA 92093, USA
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), UC San Diego, La Jolla, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA 92093, USA
| | - Nicholas Dillon
- Collaborative to Halt Antibiotic-Resistant Microbes (CHARM), UC San Diego, La Jolla, CA 92093, USA
- Department of Biological Sciences, UT Dallas, Richardson, TX 75080, USA
| |
Collapse
|
8
|
Li J, Claudi B, Fanous J, Chicherova N, Cianfanelli FR, Campbell RAA, Bumann D. Tissue compartmentalization enables Salmonella persistence during chemotherapy. Proc Natl Acad Sci U S A 2021; 118:e2113951118. [PMID: 34911764 PMCID: PMC8713819 DOI: 10.1073/pnas.2113951118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial chemotherapy can fail to eradicate the pathogen, even in the absence of antimicrobial resistance. Persisting pathogens can subsequently cause relapsing diseases. In vitro studies suggest various mechanisms of antibiotic persistence, but their in vivo relevance remains unclear because of the difficulty of studying scarce pathogen survivors in complex host tissues. Here, we localized and characterized rare surviving Salmonella in mouse spleen using high-resolution whole-organ tomography. Chemotherapy cleared >99.5% of the Salmonella but was inefficient against a small Salmonella subset in the white pulp. Previous models could not explain these findings: drug exposure was adequate, Salmonella continued to replicate, and host stresses induced only limited Salmonella drug tolerance. Instead, antimicrobial clearance required support of Salmonella-killing neutrophils and monocytes, and the density of such cells was lower in the white pulp than in other spleen compartments containing higher Salmonella loads. Neutrophil densities declined further during treatment in response to receding Salmonella loads, resulting in insufficient support for Salmonella clearance from the white pulp and eradication failure. However, adjunctive therapies sustaining inflammatory support enabled effective clearance. These results identify uneven Salmonella tissue colonization and spatiotemporal inflammation dynamics as main causes of Salmonella persistence and establish a powerful approach to investigate scarce but impactful pathogen subsets in complex host environments.
Collapse
Affiliation(s)
- Jiagui Li
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Joseph Fanous
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
9
|
Staphylococcal Bacterial Persister Cells, Biofilms, and Intracellular Infection Are Disrupted by JD1, a Membrane-Damaging Small Molecule. mBio 2021; 12:e0180121. [PMID: 34634935 PMCID: PMC8510524 DOI: 10.1128/mbio.01801-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rates of antibiotic and multidrug resistance are rapidly rising, leaving fewer options for successful treatment of bacterial infections. In addition to acquiring genetic resistance, many pathogens form persister cells, form biofilms, and/or cause intracellular infections that enable bacteria to withstand antibiotic treatment and serve as a source of recurring infections. JD1 is a small molecule previously shown to kill Gram-negative bacteria under conditions where the outer membrane and/or efflux pumps are disrupted. We show here that JD1 rapidly disrupts membrane potential and kills Gram-positive bacteria. Further investigation revealed that treatment with JD1 disrupts membrane barrier function and causes aberrant membranous structures to form. Additionally, exposure to JD1 reduced the number of Staphylococcus aureus and Staphylococcus epidermidis viable persister cells within broth culture by up to 1,000-fold and reduced the matrix and cell volume of biofilms that had been established for 24 h. Finally, we show that JD1 reduced the number of recoverable methicillin-resistant S. aureus organisms from infected cells. These observations indicate that JD1 inhibits staphylococcal cells in difficult-to-treat growth stages as well as, or better than, current clinical antibiotics. Thus, JD1 shows the importance of testing compounds under conditions that are relevant to infection, demonstrates the utility that membrane-targeting compounds have against multidrug-resistant bacteria, and indicates that small molecules that target bacterial cell membranes may serve as potent broad-spectrum antibacterials.
Collapse
|
10
|
Sulaiman JE, Lam H. Evolution of Bacterial Tolerance Under Antibiotic Treatment and Its Implications on the Development of Resistance. Front Microbiol 2021; 12:617412. [PMID: 33717007 PMCID: PMC7952611 DOI: 10.3389/fmicb.2021.617412] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Recent laboratory evolution studies have shown that upon repetitive antibiotic treatments, bacterial populations will adapt and eventually became tolerant and resistant to the drug. Drug tolerance rapidly evolves upon frequent, intermittent antibiotic treatments, and such emerging drug tolerance seems to be specific to the treatment conditions, complicating clinical practice. Moreover, it has been shown that tolerance often promotes the development of resistance, which further reinforces the need of clinical diagnostics for antibiotic tolerance to reduce the occurrence of acquired resistance. Here, we discuss the laboratory evolution studies that were performed to track the development of tolerance in bacterial populations, and highlight the urgency of developing a comprehensive knowledge base of various tolerance phenotypes and their detection in clinics. Finally, we propose future directions for basic research in this growing field.
Collapse
Affiliation(s)
- Jordy Evan Sulaiman
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Henry Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
11
|
Bechinger B, Juhl DW, Glattard E, Aisenbrey C. Revealing the Mechanisms of Synergistic Action of Two Magainin Antimicrobial Peptides. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:615494. [PMID: 35047895 PMCID: PMC8757784 DOI: 10.3389/fmedt.2020.615494] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The study of peptide-lipid and peptide-peptide interactions as well as their topology and dynamics using biophysical and structural approaches have changed our view how antimicrobial peptides work and function. It has become obvious that both the peptides and the lipids arrange in soft supramolecular arrangements which are highly dynamic and able to change and mutually adapt their conformation, membrane penetration, and detailed morphology. This can occur on a local and a global level. This review focuses on cationic amphipathic peptides of the magainin family which were studied extensively by biophysical approaches. They are found intercalated at the membrane interface where they cause membrane thinning and ultimately lysis. Interestingly, mixtures of two of those peptides namely magainin 2 and PGLa which occur naturally as a cocktail in the frog skin exhibit synergistic enhancement of antimicrobial activities when investigated together in antimicrobial assays but also in biophysical experiments with model membranes. Detailed dose-response curves, presented here for the first time, show a cooperative behavior for the individual peptides which is much increased when PGLa and magainin are added as equimolar mixture. This has important consequences for their bacterial killing activities and resistance development. In membranes that carry unsaturations both peptides align parallel to the membrane surface where they have been shown to arrange into mesophases involving the peptides and the lipids. This supramolecular structuration comes along with much-increased membrane affinities for the peptide mixture. Because this synergism is most pronounced in membranes representing the bacterial lipid composition it can potentially be used to increase the therapeutic window of pharmaceutical formulations.
Collapse
Affiliation(s)
- Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Dennis Wilkens Juhl
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - Elise Glattard
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| | - Christopher Aisenbrey
- University of Strasbourg/CNRS, UMR7177, Institut de Chimie de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathog 2020; 16:e1009119. [PMID: 33290418 PMCID: PMC7748285 DOI: 10.1371/journal.ppat.1009119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/18/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023] Open
Abstract
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.
Collapse
|
13
|
Holani R, Babbar A, Blyth GAD, Lopes F, Jijon H, McKay DM, Hollenberg MD, Cobo ER. Cathelicidin-mediated lipopolysaccharide signaling via intracellular TLR4 in colonic epithelial cells evokes CXCL8 production. Gut Microbes 2020; 12:1785802. [PMID: 32658599 PMCID: PMC7524372 DOI: 10.1080/19490976.2020.1785802] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We hypothesized that the antimicrobial peptide cathelicidin has a physiological role in regulating gut inflammatory homeostasis. We determined that cathelicidin synergizes with LPS to facilitate its internalization and signaling via endosomic TLR4 in colonic epithelium, evoking synthesis of the human neutrophil chemoattractant, CXCL8 (or murine homolog, CXCL1). Interaction of cathelicidin with LPS in the control of CXCL8/CXCL1 synthesis was assessed in human colon epithelial cells, murine colonoids and cathelicidin-null mice (Camp-/- ). Mechanistically, human cathelicidin (LL-37), as an extracellular complex with LPS, interacted with lipid raft-associated GM1 gangliosides to internalize and activate intracellular TLR4. Two signaling pathways converged on CXCL8/CXCL1 production: (1) a p38MAPK-dependent pathway regulated by Src-EGFR kinases; and, (2) a p38MAPK-independent, NF-κB-dependent pathway, regulated by MEK1/2-MAPK. Increased cathelicidin-dependent CXCL8 secretion in the colonic mucosa activated human blood-derived neutrophils. These cathelicidin effects occurred in vitro at concentrations well below those needed for microbicidal function. The important immunomodulatory role of cathelicidins was evident in cathelicidin-null/Camp-/- mice, which had diminished colonic CXCL1 secretion, decreased neutrophil recruitment-activation and reduced bacterial clearance when challenged with the colitis-inducing murine pathogen, Citrobacter rodentium. We conclude that in addition to its known microbicidal action, cathelicidin has a unique pathogen-sensing role, facilitating LPS-mediated intestinal responses, including the production of CXCL8/CXCL1 that would contribute to an integrated tissue response to recruit neutrophils during colitis.
Collapse
Affiliation(s)
- Ravi Holani
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Anshu Babbar
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Graham A. D. Blyth
- Microbiology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fernando Lopes
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Humberto Jijon
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Derek M. McKay
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Morley D. Hollenberg
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Eduardo R. Cobo
- Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada,CONTACT Eduardo R. Cobo Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, ABT2N 4N1, Canada
| |
Collapse
|
14
|
Wu ZC, Boger DL. The quest for supernatural products: the impact of total synthesis in complex natural products medicinal chemistry. Nat Prod Rep 2020; 37:1511-1531. [PMID: 33169762 PMCID: PMC7678878 DOI: 10.1039/d0np00060d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: 2000 up to 2020This review presents select recent advances in the medicinal chemistry of complex natural products that are prepared by total synthesis. The underlying studies highlight enabling divergent synthetic strategies and methods that permit the systematic medicinal chemistry studies of key analogues bearing deep-seated structural changes not readily accessible by semisynthetic or biosynthetic means. Select and recent examples are detailed where the key structural changes are designed to improve defined properties or to overcome an intrinsic limitation of the natural product itself. In the examples presented, the synthetic efforts provided supernatural products, a term first introduced by our colleague Ryan Shenvi (Synlett, 2016, 27, 1145-1164), with properties superseding the parent natural product. The design principles and approaches for creating the supernatural products are highlighted with an emphasis on the properties addressed that include those that improve activity or potency, increase selectivity, enhance durability, broaden the spectrum of activity, improve chemical or metabolic stability, overcome limiting physical properties, add mechanisms of action, enhance PK properties, overcome drug resistance, and/or improve in vivo efficacy. Some such improvements may be regarded by some as iterative enhancements whereas others, we believe, truly live up to their characterization as supernatural products. Most such efforts are also accompanied by advances in synthetic organic chemistry, inspiring the development of new synthetic methodology and providing supernatural products with improved synthetic accessibility.
Collapse
Affiliation(s)
- Zhi-Chen Wu
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
15
|
Friberg C, Haaber JK, Vestergaard M, Fait A, Perrot V, Levin BR, Ingmer H. Human antimicrobial peptide, LL-37, induces non-inheritable reduced susceptibility to vancomycin in Staphylococcus aureus. Sci Rep 2020; 10:13121. [PMID: 32753585 PMCID: PMC7403302 DOI: 10.1038/s41598-020-69962-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial peptides (AMPs) are central components of the innate immune system providing protection against pathogens. Yet, serum and tissue concentrations vary between individuals and with disease conditions. We demonstrate that the human AMP LL-37 lowers the susceptibility to vancomycin in the community-associated methicillin-resistant S. aureus (CA-MRSA) strain FPR3757 (USA300). Vancomycin is used to treat serious MRSA infections, but treatment failures occur despite MRSA strains being tested susceptible according to standard susceptibility methods. Exposure to physiologically relevant concentrations of LL-37 increased the minimum inhibitory concentration (MIC) of S. aureus towards vancomycin by 75%, and resulted in shortened lag-phase and increased colony formation at sub-inhibitory concentrations of vancomycin. Computer simulations using a mathematical antibiotic treatment model indicated that a small increase in MIC might decrease the efficacy of vancomycin in clearing a S. aureus infection. This prediction was supported in a Galleria mellonella infection model, where exposure of S. aureus to LL-37 abolished the antimicrobial effect of vancomycin. Thus, physiological relevant concentrations of LL-37 reduce susceptibility to vancomycin, indicating that tissue and host specific variations in LL-37 concentrations may influence vancomycin susceptibility in vivo.
Collapse
Affiliation(s)
- Cathrine Friberg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
- Novo Nordisk, Hagedornsvej 1, 2820, Gentofte, Denmark
| | - Jakob Krause Haaber
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
- SNIPRbiome, Lerso Parkallé 44, 2100, Copenhagen, Denmark
| | - Martin Vestergaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | - Anaëlle Fait
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark
| | | | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870, Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Berti A, Rose W, Nizet V, Sakoulas G. Antibiotics and Innate Immunity: A Cooperative Effort Toward the Successful Treatment of Infections. Open Forum Infect Dis 2020; 7:ofaa302. [PMID: 32818143 PMCID: PMC7423293 DOI: 10.1093/ofid/ofaa302] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the common ancestry of antimicrobial and immunological science, a divergence driven by artificially construed paradigms in microbiology has placed limits on how we understand the mechanisms of antibiotics in vivo. We summarize recent updates on data that shed light on how antibiotics interact with components of innate immunity.
Collapse
Affiliation(s)
- Andrew Berti
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, Michigan, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University College of Medicine, Detroit, Michigan, USA
| | - Warren Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Victor Nizet
- Collaborative to Halt Antimicrobial Resistant Microbes, University of California San Diego School of Medicine, La Jolla, California, USA.,Skaggs School of Pharmacy, University of California San Diego, La Jolla, California, USA
| | - George Sakoulas
- Collaborative to Halt Antimicrobial Resistant Microbes, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
17
|
Nagy TA, Crooks AL, Quintana JLJ, Detweiler CS. Clofazimine Reduces the Survival of Salmonella enterica in Macrophages and Mice. ACS Infect Dis 2020; 6:1238-1249. [PMID: 32272013 DOI: 10.1021/acsinfecdis.0c00023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistant pathogens are on the rise, and new treatments are needed for bacterial infections. Efforts toward antimicrobial discovery typically identify compounds that prevent bacterial growth in microbiological media. However, the microenvironments to which pathogens are exposed during infection differ from rich media and alter the biology of the pathogen. We and others have therefore developed screening platforms that identify compounds that disrupt pathogen growth within cultured mammalian cells. Our platform focuses on Gram-negative bacterial pathogens, which are of particular clinical concern. We screened a panel of 707 drugs to identify those with efficacy against Salmonella enterica Typhimurium growth within macrophages. One of the drugs identified, clofazimine (CFZ), is an antibiotic used to treat mycobacterial infections that is not recognized for potency against Gram-negative bacteria. We demonstrated that in macrophages CFZ enabled the killing of S. Typhimurium at single digit micromolar concentrations, and in mice, CFZ reduced tissue colonization. We confirmed that CFZ does not inhibit the growth of S. Typhimurium and E. coli in standard microbiological media. However, CFZ prevents bacterial replication under conditions consistent with the microenvironment of macrophage phagosomes, in which S. Typhimurium resides during infection: low pH, low magnesium and phosphate, and the presence of certain cationic antimicrobial peptides. These observations suggest that in macrophages and mice the efficacy of CFZ against S. Typhimurium is facilitated by multiple aspects of soluble innate immunity. Thus, systematic screens of existing drugs for infection-based potency are likely to identify unexpected opportunities for repurposing drugs to treat difficult pathogens.
Collapse
Affiliation(s)
- Toni A. Nagy
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Amy L. Crooks
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Joaquin L. J. Quintana
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Corrella S. Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
18
|
Hood-Pishchany MI, Pham L, Wijers CD, Burns WJ, Boyd KL, Palmer LD, Skaar EP, Noto MJ. Broad-spectrum suppression of bacterial pneumonia by aminoglycoside-propagated Acinetobacter baumannii. PLoS Pathog 2020; 16:e1008374. [PMID: 32168364 PMCID: PMC7094866 DOI: 10.1371/journal.ppat.1008374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/25/2020] [Accepted: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial resistance is increasing in pathogenic bacteria. Yet, the effect of antibiotic exposure on resistant bacteria has been underexplored and may affect pathogenesis. Here we describe the discovery that propagation of the human pathogen Acinetobacter baumannii in an aminoglycoside antibiotic results in alterations to the bacterium that interact with lung innate immunity resulting in enhanced bacterial clearance. Co-inoculation of mice with A. baumannii grown in the presence and absence of the aminoglycoside, kanamycin, induces enhanced clearance of a non-kanamycin-propagated strain. This finding can be replicated when kanamycin-propagated A. baumannii is killed prior to co-inoculation of mice, indicating the enhanced bacterial clearance results from interactions with innate host defenses in the lung. Infection with kanamycin-propagated A. baumannii alters the kinetics of phagocyte recruitment to the lung and reduces pro- and anti-inflammatory cytokine and chemokine production in the lung and blood. This culminates in reduced histopathologic evidence of lung injury during infection despite enhanced bacterial clearance. Further, the antibacterial response induced by killed aminoglycoside-propagated A. baumannii enhances the clearance of multiple clinically relevant Gram-negative pathogens from the lungs of infected mice. Together, these findings exemplify cooperation between antibiotics and the host immune system that affords protection against multiple antibiotic-resistant bacterial pathogens. Further, these findings highlight the potential for the development of a broad-spectrum therapeutic that exploits a similar mechanism to that described here and acts as an innate immunity modulator.
Collapse
Affiliation(s)
- M. Indriati Hood-Pishchany
- Department of Pediatrics, Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christiaan D. Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - William J. Burns
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lauren D. Palmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, Tennessee, United States of America
| | - Michael J. Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
19
|
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020; 19:311-332. [DOI: 10.1038/s41573-019-0058-8] [Citation(s) in RCA: 850] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
|
20
|
Ulloa ER, Dillon N, Tsunemoto H, Pogliano J, Sakoulas G, Nizet V. Avibactam Sensitizes Carbapenem-Resistant NDM-1-Producing Klebsiella pneumoniae to Innate Immune Clearance. J Infect Dis 2020; 220:484-493. [PMID: 30923801 PMCID: PMC6603980 DOI: 10.1093/infdis/jiz128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Infections caused by New Delhi metallo-β-lactamase (NDM)–producing strains of multidrug-resistant Klebsiella pneumoniae are a global public health threat lacking reliable therapies. NDM is impervious to all existing β-lactamase inhibitor (BLI) drugs, including the non–β-lactam BLI avibactam (AVI). Though lacking direct activity against NDMs, AVI can interact with penicillin-binding protein 2 in a manner that may influence cell wall dynamics. We found that exposure of NDM-1–producing K. pneumoniae to AVI led to striking bactericidal interactions with human cathelicidin antimicrobial peptide LL-37, a frontline component of host innate immunity. Moreover, AVI markedly sensitized NDM-1–producing K. pneumoniae to killing by freshly isolated human neutrophils, platelets, and serum when complement was active. Finally, AVI monotherapy reduced lung counts of NDM-1–producing K. pneumoniae in a murine pulmonary challenge model. AVI sensitizes NDM-1–producing K. pneumoniae to innate immune clearance in ways that are not appreciated by standard antibiotic testing and that merit further study.
Collapse
Affiliation(s)
- Erlinda R Ulloa
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, La Jolla.,Division of Infectious Disease, Department of Pediatrics, Children's Hospital of Philadelphia, Pennsylvania
| | - Nicholas Dillon
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, La Jolla
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California-San Diego, La Jolla
| | - Joe Pogliano
- Division of Biological Sciences, University of California-San Diego, La Jolla
| | - George Sakoulas
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, La Jolla.,Sharp Healthcare System, San Diego, California
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, La Jolla.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla
| |
Collapse
|
21
|
Detweiler CS. Infection-based chemical screens uncover host-pathogen interactions. Curr Opin Microbiol 2020; 54:43-50. [PMID: 32036306 DOI: 10.1016/j.mib.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Bacterial pathogens must resist host innate immunity to cause disease. While Gram-negative bacteria have a protective outer membrane, this membrane is subject to host-induced damage that makes these pathogens vulnerable. We developed a high content screening platform that identifies compounds that cause the killing of the bacterial pathogen Salmonella enterica in macrophages. This platform enables the rapid discovery of compounds that work in concert with the macrophage to prevent pathogen survival, as most hit compounds are not active in standard microbiological media and are not pro-drugs. We describe within the platform and the compounds it has found, and consider how they may help us discover new ways to fight infection.
Collapse
Affiliation(s)
- Corrella S Detweiler
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
22
|
Bumann D, Fanous J, Li J, Goormaghtigh F. Antibiotic chemotherapy against heterogeneous pathogen populations in complex host tissues. F1000Res 2019; 8. [PMID: 31737252 PMCID: PMC6807158 DOI: 10.12688/f1000research.19441.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Antibiotic chemotherapy effectively cures many infections caused by susceptible bacterial pathogens. However, in some cases, even extended treatment duration does not completely eradicate the pathogenic bacteria from host tissues. A common model for underlying mechanisms assumes the stochastic formation of bacterial persisters similar to observations in laboratory cultures. However, alternative explanations related to the complexity of infected host tissues could also be relevant. We discuss several of these aspects and emphasize the need for integrated analysis as a basis for new control strategies.
Collapse
Affiliation(s)
- Dirk Bumann
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Joseph Fanous
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Jiagui Li
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| | - Frédéric Goormaghtigh
- Research Area Infection Biology, Biozentrum, University of Basel, Basel, CH-4056, Switzerland
| |
Collapse
|
23
|
Heesterbeek DAC, Martin NI, Velthuizen A, Duijst M, Ruyken M, Wubbolts R, Rooijakkers SHM, Bardoel BW. Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics. Sci Rep 2019; 9:3074. [PMID: 30816122 PMCID: PMC6395757 DOI: 10.1038/s41598-019-38577-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/02/2019] [Indexed: 01/21/2023] Open
Abstract
Gram-negative bacteria are refractory to the action of many antibiotics due to their impermeable outer membrane. An important player of the immune system is the complement system, a protein network in serum that directly kills Gram-negative bacteria through pore-formation by the Membrane Attack Complexes (MAC). We here show that the MAC rapidly perforates the outer membrane but that inner membrane damage, which is essential for killing, is relatively slow. Importantly, we demonstrate that MAC-induced outer membrane damage sensitizes Gram-negative bacteria to otherwise ineffective, Gram-positive-specific, antimicrobials. Synergy between serum and nisin was observed for 22 out of 53 tested Gram-negative clinical isolates and for multi-drug resistant (MDR) blood isolates. The in vivo relevance of this process is further highlighted by the fact that blood sensitizes a MDR K. pneumoniae strain to vancomycin. Altogether, these data imply that antibiotics that are considered ineffective to treat infections with Gram-negatives may have different functional outcomes in patients, due to the presence of the complement system.
Collapse
Affiliation(s)
- D A C Heesterbeek
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - N I Martin
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - A Velthuizen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M Duijst
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - M Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - R Wubbolts
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, Netherlands
| | - S H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - B W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
24
|
Aisenbrey C, Marquette A, Bechinger B. The Mechanisms of Action of Cationic Antimicrobial Peptides Refined by Novel Concepts from Biophysical Investigations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1117:33-64. [PMID: 30980352 DOI: 10.1007/978-981-13-3588-4_4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.
Collapse
Affiliation(s)
| | - Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France. .,Faculté de chimie, Institut le Bel, Strasbourg, France.
| |
Collapse
|
25
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
26
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
27
|
Reens AL, Crooks AL, Su CC, Nagy TA, Reens DL, Podoll JD, Edwards ME, Yu EW, Detweiler CS. A cell-based infection assay identifies efflux pump modulators that reduce bacterial intracellular load. PLoS Pathog 2018; 14:e1007115. [PMID: 29879224 PMCID: PMC6007937 DOI: 10.1371/journal.ppat.1007115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/19/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial efflux pumps transport small molecules from the cytoplasm or periplasm outside the cell. Efflux pump activity is typically increased in multi-drug resistant (MDR) pathogens; chemicals that inhibit efflux pumps may have potential for antibiotic development. Using an in-cell screen, we identified three efflux pump modulators (EPMs) from a drug diversity library. The screening platform uses macrophages infected with the human Gram-negative pathogen Salmonella enterica (Salmonella) to identify small molecules that prevent bacterial replication or survival within the host environment. A secondary screen for hit compounds that increase the accumulation of an efflux pump substrate, Hoechst 33342, identified three small molecules with activity comparable to the known efflux pump inhibitor PAβN (Phe-Arg β-naphthylamide). The three putative EPMs demonstrated significant antibacterial activity against Salmonella within primary and cell culture macrophages and within a human epithelial cell line. Unlike traditional antibiotics, the three compounds did not inhibit bacterial growth in standard microbiological media. The three compounds prevented energy-dependent efflux pump activity in Salmonella and bound the AcrB subunit of the AcrAB-TolC efflux system with KDs in the micromolar range. Moreover, the EPMs display antibacterial synergy with antimicrobial peptides, a class of host innate immune defense molecules present in body fluids and cells. The EPMs also had synergistic activity with antibiotics exported by AcrAB-TolC in broth and in macrophages and inhibited efflux pump activity in MDR Gram-negative ESKAPE clinical isolates. Thus, an in-cell screening approach identified EPMs that synergize with innate immunity to kill bacteria and have potential for development as adjuvants to antibiotics.
Collapse
Affiliation(s)
- Abigail L. Reens
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Amy L. Crooks
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve, Cleveland OH, United States of America
| | - Toni A. Nagy
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - David L. Reens
- Department of Physics, University of Colorado Boulder, Boulder, CO, United States of America
- JILA, National Institutes of Standards and Technology and University of Colorado Boulder, Boulder, CO, United States of America
| | - Jessica D. Podoll
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Madeline E. Edwards
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve, Cleveland OH, United States of America
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
28
|
Marquette A, Bechinger B. Biophysical Investigations Elucidating the Mechanisms of Action of Antimicrobial Peptides and Their Synergism. Biomolecules 2018; 8:E18. [PMID: 29670065 PMCID: PMC6023007 DOI: 10.3390/biom8020018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/30/2023] Open
Abstract
Biophysical and structural investigations are presented with a focus on the membrane lipid interactions of cationic linear antibiotic peptides such as magainin, PGLa, LL37, and melittin. Observations made with these peptides are distinct as seen from data obtained with the hydrophobic peptide alamethicin. The cationic amphipathic peptides predominantly adopt membrane alignments parallel to the bilayer surface; thus the distribution of polar and non-polar side chains of the amphipathic helices mirror the environmental changes at the membrane interface. Such a membrane partitioning of an amphipathic helix has been shown to cause considerable disruptions in the lipid packing arrangements, transient openings at low peptide concentration, and membrane disintegration at higher peptide-to-lipid ratios. The manifold supramolecular arrangements adopted by lipids and peptides are represented by the 'soft membranes adapt and respond, also transiently' (SMART) model. Whereas molecular dynamics simulations provide atomistic views on lipid membranes in the presence of antimicrobial peptides, the biophysical investigations reveal interesting details on a molecular and supramolecular level, and recent microscopic imaging experiments delineate interesting sequences of events when bacterial cells are exposed to such peptides. Finally, biophysical studies that aim to reveal the mechanisms of synergistic interactions of magainin 2 and PGLa are presented, including unpublished isothermal titration calorimetry (ITC), circular dichroism (CD) and dynamic light scattering (DLS) measurements that suggest that the peptides are involved in liposome agglutination by mediating intermembrane interactions. A number of structural events are presented in schematic models that relate to the antimicrobial and synergistic mechanism of amphipathic peptides when they are aligned parallel to the membrane surface.
Collapse
Affiliation(s)
- Arnaud Marquette
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|