1
|
Xu Y, Wang Z, Li C, Tian S, Du W. Droplet microfluidics: unveiling the hidden complexity of the human microbiome. LAB ON A CHIP 2025; 25:1128-1148. [PMID: 39775305 DOI: 10.1039/d4lc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications. We emphasize its role in enhancing single-cell sequencing technologies, particularly genome and RNA sequencing, transforming our understanding of microbial diversity, gene expression, and community dynamics. We explore its critical function in isolating and cultivating traditionally unculturable microbes and investigating microbial activity and interactions, facilitating deeper insight into community behavior and metabolic functions. Lastly, we highlight its broader applications in microbial analysis and its potential to revolutionize human health research by driving innovations in diagnostics, therapeutic development, and personalized medicine. This review provides a comprehensive overview of droplet microfluidics' impact on microbiome research, underscoring its potential to transform our understanding of microbial dynamics and their relevance to health and disease.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhiyi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuiquan Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang Z, Hülpüsch C, Foesel B, Traidl-Hoffmann C, Reiger M, Schloter M. Genomic and functional divergence of Staphylococcus aureus strains from atopic dermatitis patients and healthy individuals: insights from global and local scales. Microbiol Spectr 2024; 12:e0057124. [PMID: 39162515 PMCID: PMC11448032 DOI: 10.1128/spectrum.00571-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease worldwide and is characterized by a complex interplay with skin microbiota, with Staphylococcus aureus often abnormally more abundant in AD patients than in healthy individuals (HE). S. aureus harbors diverse strains with varied genetic compositions and functionalities, which exhibit differential connections with the severity of AD. However, the differences in S. aureus strains between AD and HE remain unclear, with most variations seen at a specific geographic level, implying spontaneous adaptations rather than systematic distinctions. This study presents genomic and functional differences between these S. aureus strains from AD and HE on both global and local levels. We observed reduced gene content diversity but increased functional variation in the global AD-associated strains. Two additional AD-dominant clusters emerged, with Cluster 1 enriched in transposases and Cluster 2 showcasing genes linked to adaptability and antibiotic resistance. Particularly, robust evidence illustrates that the lantibiotic operon of S. aureus, involved in the biosynthesis of lantibiotics, was acquired via horizontal gene transfer from environmental bacteria. Comparisons of the gene abundance profiles in functional categories also indicate limited zoonotic potential between human and animal isolates. Local analysis mirrored global gene diversity but showed distinct functional variations between AD and HE strains. Overall, this research provides foundational insights into the genomic evolution, adaptability, and antibiotic resistance of S. aureus, with significant implications for clinical microbiology.IMPORTANCEOur study uncovers significant genomic variations in Staphylococcus aureus strains associated with atopic dermatitis. We observed adaptive evolution tailored to the disease microenvironment, characterized by a smaller pan-genome than strains from healthy skin both on the global and local levels. Key functional categories driving strain diversification include "replication and repair" and "transporters," with transposases being pivotal. Interestingly, the local strains predominantly featured metal-related genes, whereas global ones emphasized antimicrobial resistances, signifying scale-dependent diversification nuances. We also pinpointed horizontal gene transfer events, indicating interactions between human-associated and environmental bacteria. These insights expand our comprehension of S. aureus's genetic adaptation in atopic dermatitis, yielding valuable implications for clinical approaches.
Collapse
Affiliation(s)
- Zhongjie Wang
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Hülpüsch
- Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Bärbel Foesel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- CK CARE, Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Matthias Reiger
- Institute of Environmental Medicine, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Environmental Microbiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Li P, Schulte J, Wurpts G, Hornef MW, Wolz C, Yazdi AS, Burian M. Transcriptional Profiling of Staphylococcus aureus during the Transition from Asymptomatic Nasal Colonization to Skin Colonization/Infection in Patients with Atopic Dermatitis. Int J Mol Sci 2024; 25:9165. [PMID: 39273114 PMCID: PMC11394835 DOI: 10.3390/ijms25179165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Staphylococcus aureus acts both as a colonizing commensal bacterium and invasive pathogen. Nasal colonization is associated with an increased risk of infection caused by the identical strain. In patients with atopic dermatitis (AD), the degree of S. aureus colonization is associated with the severity of the disease. Here, we comparatively analyzed the in vivo transcriptional profile of S. aureus colonizing the nose and non-diseased skin (non-lesional skin) as opposed to the diseased skin (lesional skin-defined here as infection) of 12 patients with AD. The transcriptional profile during the asymptomatic colonization of the nose closely resembled that of the lesional skin samples for many of the genes studied, with an elevated expression of the genes encoding adhesion-related proteins and proteases. In addition, the genes that modify and remodel the cell wall and encode proteins that facilitate immune evasion showed increased transcriptional activity. Notably, in a subgroup of patients, the global virulence regulator Agr (accessory gene regulator) and downstream target genes were inactive during nasal colonization but upregulated in the lesional and non-lesional skin samples. Taken together, our results demonstrate a colonization-like transcriptional profile on diseased skin and suggest a role for the peptide quorum sensing system Agr during the transition from asymptomatic nasal colonization to skin colonization/infection.
Collapse
Affiliation(s)
- Peijuan Li
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| | - Julia Schulte
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| | - Gerda Wurpts
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, D-72076 Tuebingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", University of Tuebingen, D-72076 Tuebingen, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| | - Marc Burian
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, D-5207 Aachen, Germany
| |
Collapse
|
4
|
Simpson EL, Schlievert PM, Yoshida T, Lussier S, Boguniewicz M, Hata T, Fuxench Z, De Benedetto A, Ong PY, Ko J, Calatroni A, Rudman Spergel AK, Plaut M, Quataert SA, Kilgore SH, Peterson L, Gill AL, David G, Mosmann T, Gill SR, Leung DYM, Beck LA. Rapid reduction in Staphylococcus aureus in atopic dermatitis subjects following dupilumab treatment. J Allergy Clin Immunol 2023; 152:1179-1195. [PMID: 37315812 PMCID: PMC10716365 DOI: 10.1016/j.jaci.2023.05.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) is an inflammatory disorder characterized by dominant type 2 inflammation leading to chronic pruritic skin lesions, allergic comorbidities, and Staphylococcus aureus skin colonization and infections. S aureus is thought to play a role in AD severity. OBJECTIVES This study characterized the changes in the host-microbial interface in subjects with AD following type 2 blockade with dupilumab. METHODS Participants (n = 71) with moderate-severe AD were enrolled in a randomized (dupilumab vs placebo; 2:1), double-blind study at Atopic Dermatitis Research Network centers. Bioassays were performed at multiple time points: S aureus and virulence factor quantification, 16s ribosomal RNA microbiome, serum biomarkers, skin transcriptomic analyses, and peripheral blood T-cell phenotyping. RESULTS At baseline, 100% of participants were S aureus colonized on the skin surface. Dupilumab treatment resulted in significant reductions in S aureus after only 3 days (compared to placebo), which was 11 days before clinical improvement. Participants with the greatest S aureus reductions had the best clinical outcomes, and these reductions correlated with reductions in serum CCL17 and disease severity. Reductions (10-fold) in S aureus cytotoxins (day 7), perturbations in TH17-cell subsets (day 14), and increased expression of genes relevant for IL-17, neutrophil, and complement pathways (day 7) were also observed. CONCLUSIONS Blockade of IL-4 and IL-13 signaling, very rapidly (day 3) reduces S aureus abundance in subjects with AD, and this reduction correlates with reductions in the type 2 biomarker, CCL17, and measures of AD severity (excluding itch). Immunoprofiling and/or transcriptomics suggest a role for TH17 cells, neutrophils, and complement activation as potential mechanisms to explain these findings.
Collapse
Affiliation(s)
- Eric L Simpson
- Department of Dermatology, Oregon Health and Science University, Portland, Ore
| | | | - Takeshi Yoshida
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | | | - Mark Boguniewicz
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego, Calif
| | - Zelma Fuxench
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pa
| | - Anna De Benedetto
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Peck Y Ong
- Department of Pediatrics, University Southern California, Los Angeles, Calif
| | - Justin Ko
- Department of Dermatology, Stanford University, Stanford, Calif
| | | | - Amanda K Rudman Spergel
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Marshall Plaut
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Sally A Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Samuel H Kilgore
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa
| | - Liam Peterson
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | | | - Tim Mosmann
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Donald Y M Leung
- Division of Allergy-Immunology, Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver, Colo.
| | - Lisa A Beck
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
5
|
Moran MC, Brewer MG, Schlievert PM, Beck LA. S. aureus virulence factors decrease epithelial barrier function and increase susceptibility to viral infection. Microbiol Spectr 2023; 11:e0168423. [PMID: 37737609 PMCID: PMC10581065 DOI: 10.1128/spectrum.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 09/23/2023] Open
Abstract
Individuals with atopic dermatitis (AD) are highly colonized by Staphylococcus aureus and are more susceptible to severe viral complications. We hypothesized that S. aureus secreted virulence factors may alter keratinocyte biology to enhance viral susceptibility through disruption of the skin barrier, impaired keratinocyte differentiation, and/or inflammation. To address this hypothesis, human keratinocytes were exposed to conditioned media from multiple S. aureus strains that vary in virulence factor production (USA300, HG003, and RN4220) or select purified virulence factors. We have identified the S. aureus enterotoxin-like superantigen SElQ, as a virulence factor of interest, since it is highly produced by USA300 and was detected on the skin of 53% of AD subjects (n = 72) in a study conducted by our group. Treatment with USA300 conditioned media or purified SElQ resulted in a significant increase in keratinocyte susceptibility to infection with vaccinia virus, and also significantly decreased barrier function. Importantly, we have previously demonstrated that keratinocyte differentiation influences susceptibility to viral infection, and our qPCR observations indicated that USA300 S. aureus and SElQ alter differentiation in keratinocytes. CRISPR/Cas9 was used to knock out CD40, a potential enterotoxin receptor on epithelial cells. We found that CD40 expression on keratinocytes was not completely necessary for SElQ-mediated responses, as measured by proinflammatory cytokine expression and barrier function. Together, these findings support that select S. aureus virulence factors, particularly SElQ, enhance the susceptibility of epidermal cells to viral infection, which may contribute to the increased cutaneous infections observed in individuals with AD. IMPORTANCE Staphylococcus aureus skin colonization and infection are frequently observed in individuals with atopic dermatitis. Many S. aureus strains belong to the clonal group USA300, and these strains produce superantigens including the staphylococcal enterotoxin-like Q (SElQ). Our studies highlight that SElQ may play a key role by altering keratinocyte differentiation and reducing barrier function; collectively, this may explain the AD-specific enhanced infection risk to cutaneous viruses. It is unclear what receptor mediates SElQ's effects on keratinocytes. We have shown that one putative surface receptor, CD40, was not critical for its effects on proinflammatory cytokine production or barrier function.
Collapse
Affiliation(s)
- Mary C. Moran
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew G. Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Lisa A. Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Beck LA, Bieber T, Weidinger S, Tauber M, Saeki H, Irvine AD, Eichenfield LF, Werfel T, Arlert P, Jiang L, Røpke M, Paller AS. Tralokinumab treatment improves the skin microbiota by increasing the microbial diversity in adults with moderate-to-severe atopic dermatitis: Analysis of microbial diversity in ECZTRA 1, a randomized controlled trial. J Am Acad Dermatol 2023; 88:816-823. [PMID: 36473633 DOI: 10.1016/j.jaad.2022.11.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is characterized by microbial dysbiosis, immune dysregulation, and an impaired skin barrier. Microbial dysbiosis in AD involves a reduction in diversity primarily driven by an increased abundance of Staphylococcus aureus. Tralokinumab, an approved treatment for adults with moderate-to-severe AD, improves the skin barrier and immune abnormalities by specifically targeting the interleukin 13 cytokine, but its impact on the skin microbiome is unknown. OBJECTIVE To investigate how tralokinumab affects the skin microbiome by examining the lesional skin of adults with moderate-to-severe AD from the phase 3 ECZTRA 1 trial (NCT03131648). METHODS Microbiome profiling, S aureus abundance, and biomarker data were assessed in a subset of ECZTRA 1 participants (S aureus abundance at baseline and week 16; microbiome profiling at baseline, and week 8/16; and serum sampling before dose and week 4/8/16/28/52). RESULTS Tralokinumab treatment led to increased microbial diversity, reduced S aureus abundance, and increased abundance of the commensal coagulase-negative Staphylococci. LIMITATIONS Limitations include a lack of S aureus abundance data at week 8, sampling site variation between participants, and possible influence from concomitant systemic antiinfectives. CONCLUSION Our findings indicate specific targeting of the interleukin 13 cytokine with tralokinumab can directly and/or indirectly improve microbial dysbiosis seen in AD skin.
Collapse
Affiliation(s)
- Lisa A Beck
- Department of Dermatology, Medicine and Pathology, University of Rochester Medical Center, Rochester, New York.
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital, Bonn, Germany; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marie Tauber
- Dermatology and Allergology Department, Toulouse University Hospital and Inserm UMR1291 - CNRS UMR5051, Toulouse, France
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo, Japan
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Ireland; Department of Dermatology, Children's Health Ireland, Dublin, Ireland
| | - Lawrence F Eichenfield
- Departments of Dermatology and Pediatrics, University of California San Diego School of Medicine, La Jolla, California
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | | | - Li Jiang
- LEO Pharma A/S, Ballerup, Denmark
| | | | - Amy S Paller
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
7
|
Blicharz L, Żochowski M, Szymanek-Majchrzak K, Czuwara J, Goldust M, Skowroński K, Młynarczyk G, Olszewska M, Samochocki Z, Rudnicka L. Enterotoxin Gene Cluster and selX Are Associated with Atopic Dermatitis Severity-A Cross-Sectional Molecular Study of Staphylococcus aureus Superantigens. Cells 2022; 11:cells11233921. [PMID: 36497178 PMCID: PMC9737390 DOI: 10.3390/cells11233921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus superantigens (SAgs) have been reported to aggravate atopic dermatitis. However, comprehensive analyses of these molecules in multiple microniches are lacking. The present study involved 50 adult patients with active atopic dermatitis. S. aureus was isolated from the lesional skin, nonlesional skin, and anterior nares. Multiplex-PCR was performed to identify genes encoding (1) selX (core genome); (2) seg, selI, selM, selN, selO, selU (enterotoxin gene cluster, EGC); and (3) sea, seb, sec, sed, see, tstH (classic SAgs encoded on other mobile genetic elements). The results were correlated to clinical parameters of the study group. selx and EGC were the most prevalent in all microniches. The number of SAg-encoding genes correlated between the anterior nares and nonlesional skin, and between the nonlesional and lesional skin. On lesional skin, the total number of SAg genes correlated with disease severity (total and objective SCORAD, intensity, erythema, edema/papulation, lichenification and dryness). Linear regression revealed that AD severity was predicted only by selx and EGC. This study revealed that selX and EGC are associated with atopic dermatitis severity. Anterior nares and nonlesional skin could be reservoirs of SAg-positive S. aureus. Restoring the physiological microbiome could reduce the SAg burden and alleviate syndromes of atopic dermatitis.
Collapse
Affiliation(s)
- Leszek Blicharz
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Maciej Żochowski
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | | | - Joanna Czuwara
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
- Correspondence:
| | - Mohamad Goldust
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT 06519, USA
| | | | - Grażyna Młynarczyk
- Department of Medical Microbiology, Medial University of Warsaw, 02-004 Warsaw, Poland
| | | | - Zbigniew Samochocki
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medial University of Warsaw, 02-008 Warsaw, Poland
| |
Collapse
|
8
|
Skin Dialogues in Atopic Dermatitis. Diagnostics (Basel) 2022; 12:diagnostics12081889. [PMID: 36010238 PMCID: PMC9406348 DOI: 10.3390/diagnostics12081889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic skin disorder associated with significant quality-of-life impairment and increased risk for allergic and non-allergic comorbidities. The aim of this review is to elucidate the connection between AD and most common comorbidities, as this requires a holistic and multidisciplinary approach. Advances in understanding these associations could lead to the development of highly effective and targeted treatments.
Collapse
|
9
|
Abstract
Staphylococcus hominis is frequently isolated from human skin, and we hypothesize that it may protect the cutaneous barrier from opportunistic pathogens. We determined that S. hominis makes six unique autoinducing peptide (AIP) signals that inhibit the major virulence factor accessory gene regulator (agr) quorum sensing system of Staphylococcus aureus. We solved and confirmed the structures of three novel AIP signals in conditioned medium by mass spectrometry and then validated synthetic AIP activity against all S. aureus agr classes. Synthetic AIPs also inhibited the conserved agr system in a related species, Staphylococcus epidermidis. We determined the distribution of S. hominis agr types on healthy human skin and found S. hominis agr-I and agr-II were highly represented across subjects. Further, synthetic AIP-II was protective in vivo against S. aureus-associated dermonecrotic or epicutaneous injury. Together, these findings demonstrate that a ubiquitous colonizer of human skin has a fundamentally protective role against opportunistic damage. IMPORTANCE Human skin is home to a variety of commensal bacteria, including many species of coagulase-negative staphylococci (CoNS). While it is well established that the microbiota as a whole maintains skin homeostasis and excludes pathogens (i.e., colonization resistance), relatively little is known about the unique contributions of individual CoNS species to these interactions. Staphylococcus hominis is the second most frequently isolated CoNS from healthy skin, and there is emerging evidence to suggest that it may play an important role in excluding pathogens, including Staphylococcus aureus, from colonizing or infecting the skin. Here, we identified that S. hominis makes 6 unique peptide inhibitors of the S. aureus global virulence factor regulation system (agr). Additionally, we found that one of these peptides can prevent topical or necrotic S. aureus skin injury in a mouse model. Our results demonstrate a specific and broadly protective role for this ubiquitous, yet underappreciated skin commensal.
Collapse
|
10
|
Poh SE, Koh WL, Lim SYD, Wang EC, Yew YW, Common JE, Oon HH, Li H. Expression of Staphylococcus aureus virulence factors in atopic dermatitis. JID INNOVATIONS 2022; 2:100130. [PMID: 35860448 PMCID: PMC9289736 DOI: 10.1016/j.xjidi.2022.100130] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Atopic dermatitis (AD) is a skin inflammatory disease in which the opportunistic pathogen Staphylococcus aureus is prevalent and abundant. S. aureus harbors several secreted virulence factors that have well-studied functions in infection models, but it is unclear whether these extracellular microbial factors are relevant in the context of AD. To address this question, we designed a culture-independent method to detect and quantify S. aureus virulence factors expressed at the skin sites. We utilized RNase-H‒dependent multiplex PCR for preamplification of reverse-transcribed RNA extracted from tape strips of patients with AD sampled at skin sites with differing severity and assessed the expression of a panel of S. aureus virulence factors using qPCR. We observed an increase in viable S. aureus abundance on sites with increased severity of disease, and many virulence factors were expressed at the AD skin sites. Surprisingly, we did not observe any significant upregulation of the virulence factors at the lesional sites compared with those at the nonlesional control. Overall, we utilized a robust assay to directly detect and quantify viable S. aureus and its associated virulence factors at the site of AD skin lesions. This method can be extended to study the expression of skin microbial genes at the sites of various dermatological conditions.
Collapse
Affiliation(s)
- Si En Poh
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
| | - Winston L.C. Koh
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
| | - Shi Yu Derek Lim
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Etienne C.E. Wang
- National Skin Centre, National Healthcare Group, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore
| | - Yik Weng Yew
- National Skin Centre, National Healthcare Group, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - John E.A. Common
- ASTAR Skin Research Labs (ASRL), Agency for Science, Technology and Research, Singapore, Singapore
| | - Hazel H. Oon
- National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Hao Li
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore
- Correspondence: Hao Li, Department of Chemistry, Faculty of Science, National University of Singapore, 4 Science Drive 2, S9 Level 12, Singapore 117544, Singapore.
| |
Collapse
|
11
|
Chia M, Naim AN, Tay AS, Lim K, Lee CK, Yow SJ, Chen J, Common JE, Nagarajan N, Tham EH. Shared signatures and divergence in skin microbiomes of children with atopic dermatitis and their caregivers. J Allergy Clin Immunol 2022; 150:894-908. [DOI: 10.1016/j.jaci.2022.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 10/18/2022]
|
12
|
Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022; 11:pathogens11020121. [PMID: 35215065 PMCID: PMC8879973 DOI: 10.3390/pathogens11020121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022] Open
Abstract
The microbiome, as a community of microorganisms and their structural elements, genomes, metabolites/signal molecules, has been shown to play an important role in human health, with significant beneficial applications for gut health. Skin microbiome has emerged as a new field with high potential to develop disruptive solutions to manage skin health and disease. Despite an incomplete toolbox for skin microbiome analyses, much progress has been made towards functional dissection of microbiomes and host-microbiome interactions. A standardized and robust investigation of the skin microbiome is necessary to provide accurate microbial information and set the base for a successful translation of innovations in the dermo-cosmetic field. This review provides an overview of how the landscape of skin microbiome research has evolved from method development (multi-omics/data-based analytical approaches) to the discovery and development of novel microbiome-derived ingredients. Moreover, it provides a summary of the latest findings on interactions between the microbiomes (gut and skin) and skin health/disease. Solutions derived from these two paths are used to develop novel microbiome-based ingredients or solutions acting on skin homeostasis are proposed. The most promising skin and gut-derived microbiome interventional strategies are presented, along with regulatory, safety, industrial, and technical challenges related to a successful translation of these microbiome-based concepts/technologies in the dermo-cosmetic industry.
Collapse
|
13
|
Moran MC, Pandya RP, Leffler KA, Yoshida T, Beck LA, Brewer MG. Characterization of Human Keratinocyte Cell Lines for Barrier Studies. JID INNOVATIONS 2021; 1:100018. [PMID: 34909717 PMCID: PMC8659750 DOI: 10.1016/j.xjidi.2021.100018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/05/2023] Open
Abstract
Epidermal cell models are critical for studying skin biology. The gold standard used by the scientific community has historically been primary cell cultures from discarded tissue, typically from neonates (foreskin). Although directly applicable to humans, this system suffers from multiple issues, including substantial donor-to-donor variability and a finite number of divisions in culture. As such, we have identified a faithful alternative called N/TERT2G cells. These cells show many of the characteristics of primary cells, including barrier formation, differentiation kinetics and/or protein expression, and pathogenesis. From our observations, N/TERT2G cells can serve as a reproducible and genetically manipulatable platform in studying skin biology.
Collapse
Affiliation(s)
- Mary C Moran
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Radha P Pandya
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Kimberly A Leffler
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Takeshi Yoshida
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa A Beck
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew G Brewer
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
14
|
Regulatory mechanisms of sub-inhibitory levels antibiotics agent in bacterial virulence. Appl Microbiol Biotechnol 2021; 105:3495-3505. [PMID: 33893838 DOI: 10.1007/s00253-021-11291-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 01/13/2023]
Abstract
Antibiotics play a key role in the prevention and treatment of bacterial diseases for human and animals. The widespread use of antibiotics results in bacterial exposure to the concentrations that are lower than the MIC (that is, sub-inhibitory concentration (sub-MIC)) in the environment, humans, and livestock, which can lead to antibiotic resistance. In this review, we focus on the impact of sub-MIC antibiotics in bacterial virulence. This paper summarized the known relationships between sub-MIC antibiotics in the environment and bacterial virulence. Together, considering the impact of sub-MIC antibiotics and their alternative products in the virulence of bacteria, it is helpful to the rational use of antibiotics and the development of antibiotic alternative products to provide new insights.Key points• Sub-MIC level antibiotics exist in the environment, humans, and livestock.• The review includes mechanisms of sub-MIC antibiotics in bacterial virulence.• New antibacterial strategies and agents are being a new way to weaken virulence. Graphical Abstract.
Collapse
|
15
|
Preda M, Mihai MM, Popa LI, Dițu LM, Holban AM, Manolescu LSC, Popa GL, Muntean AA, Gheorghe I, Chifiriuc CM, Popa MI. Phenotypic and genotypic virulence features of staphylococcal strains isolated from difficult-to-treat skin and soft tissue infections. PLoS One 2021; 16:e0246478. [PMID: 33529240 PMCID: PMC7853507 DOI: 10.1371/journal.pone.0246478] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/19/2021] [Indexed: 12/04/2022] Open
Abstract
Chronic infections represent an important burden on the healthcare system and have a significant impact on the patients’ quality of life. While Staphylococcus spp. are commensal bacteria, they can become pathogenic, leading to various types of infections. In this study we aimed to characterize the virulence profiles of staphylococcal strains involved in difficult-to-treat skin and soft tissue infections, from both phenotypic and genotypic points of view. Phenotypic ability of the strains to secrete soluble virulence factors was assessed by a culturing dependent assay and their capacity to develop biofilms on inert substrate was screened by an adapted crystal violet microtiter method. We also tested the presence of several virulence genes by PCR. Most of the studied strains were isolated from purulent secretions of acne lesions and frequently secreted two or three soluble virulence factors. Most frequently secreted soluble virulence factors were caseinase (89%), lipase (71%) and lecithinase (67%). Almost half of the strains produced a well-represented biofilm. The molecular characterization showed the presence of the genes cna, hlg, clfA, and clfB. Staphylococcal strains that produce difficult-to-treat skin and soft tissue infections seem to be characterized by an enhanced ability to produce different soluble virulence factors and to develop biofilms in vitro. Further studies need to be developed in other Staphylococcus spp. infections in order to confirm this hypothesis.
Collapse
Affiliation(s)
- Mădălina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
- ‘Cantacuzino’ National Medico-Military Research and Development Institute, Bucharest, Romania
| | - Mara Mădălina Mihai
- Department of Oncologic Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
- Department of Dermatology, ‘Elias’ University Emergency Hospital, Bucharest, Romania
- * E-mail: (MMM); (LIP)
| | - Laura Ioana Popa
- Department of Bioinformatics, The National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- * E-mail: (MMM); (LIP)
| | - Lia-Mara Dițu
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
| | - Gabriela-Loredana Popa
- Department of Microbiology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Irina Gheorghe
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Carmen Mariana Chifiriuc
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mircea-Ioan Popa
- ‘Cantacuzino’ National Medico-Military Research and Development Institute, Bucharest, Romania
- Department of Microbiology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|