1
|
Klvanova E, Videnska P, Barton V, Bohm J, Splichalova P, Koksova V, Urik M, Lanickova B, Prokes R, Budinska E, Klanova J, Borilova Linhartova P. Resistome in the indoor dust samples from workplaces and households: a pilot study. Front Cell Infect Microbiol 2024; 14:1484100. [PMID: 39691696 PMCID: PMC11649746 DOI: 10.3389/fcimb.2024.1484100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 12/19/2024] Open
Abstract
The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals.
Collapse
Affiliation(s)
- Eva Klvanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Videnska
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Barton
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Bohm
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | | | | | - Milan Urik
- Department of Pediatric Otorhinolaryngology, University Hospital Brno, Brno, Czechia
- Department of Pediatric Otorhinolaryngology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Barbara Lanickova
- Department of Neonatology, University Hospital Brno, Brno, Czechia
- Department of Gynecology and Obstetrics, University Hospital Brno, Brno, Czechia
- Department of Gynecology and Obstetrics, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Roman Prokes
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
- Department of Atmospheric Matter Fluxes and Long-range Transport, Global Change Research Institute of the Czech Academy of Sciences, Brno, Czechia
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | | |
Collapse
|
2
|
Yu YH, Wu LB, Liu X, Zhao LC, Li LQ, Jin MY, Yu X, Liu F, Li Y, Li L, Yan JK. In vitro simulated digestion and fermentation characteristics of pectic polysaccharides from fresh passion fruit (Passiflora edulis f. flavicarpa L.) peel. Food Chem 2024; 452:139606. [PMID: 38744127 DOI: 10.1016/j.foodchem.2024.139606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
In this study, two pectic polysaccharides (PFP-T and PFP-UM) were extracted from fresh passion fruit peels using three-phase partitioning (TPP) and sequential ultrasound-microwave-assisted TPP methods, respectively, and their effects on the in vitro gastrointestinal digestion and fecal fermentation characteristics were examined. The results indicate that gastrointestinal digestion has a minimal effect on the physicochemical and structural characteristics of PFP-T and PFP-UM. However, during in vitro fecal fermentation, both undigested PFP-T and PFP-UM are significantly degraded and utilized by intestinal microorganisms, showing increased the total relative abundance of Firmicutes and Bacteroidota in the intestinal flora. Notably, compared with PFP-UM, PFP-T better promoted the reproduction of beneficial bacteria such as Prevotella, Megasphaera and Dialister, while suppressed the growth of harmful genera including Escherichia-Shigella, producing higher content of short-chain fatty acids. Therefore, our findings suggest that PFP-T derived from passion fruit peel has potential as a dietary supplement for promoting intestinal health.
Collapse
Affiliation(s)
- Ya-Hui Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Luo-Bang Wu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Li-Chao Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Long-Qing Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Ming-Yu Jin
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiangying Yu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
3
|
Le Cosquer G, Vergnolle N, Motta JP. Gut microb-aging and its relevance to frailty aging. Microbes Infect 2024; 26:105309. [PMID: 38316374 DOI: 10.1016/j.micinf.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
This review explores 'microb-aging' in the gut and its potential link to frailty aging. We explore this connection through alterations in microbiota's taxonomy and metabolism, as well as with concepts of ecological resilience, pathobionts emergence, and biogeography. We examine microb-aging in interconnected body organs, emphasizing the bidirectional relationship with 'inflammaging'. Finally, we discuss how targeting microb-aging could improve screening, diagnostic, and therapeutic approaches in geriatrics.
Collapse
Affiliation(s)
- Guillaume Le Cosquer
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Gastroenterology and Pancreatology, Toulouse University Hospital, Toulouse Paul Sabatier University, 31059 Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France; Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, Toulouse University, INSERM U1220, INRAe, ENVT, UPS, 31300 Toulouse, France.
| |
Collapse
|
4
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
5
|
Fredriksen S, de Warle S, van Baarlen P, Boekhorst J, Wells JM. Resistome expansion in disease-associated human gut microbiomes. MICROBIOME 2023; 11:166. [PMID: 37507809 PMCID: PMC10386251 DOI: 10.1186/s40168-023-01610-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The resistome, the collection of antibiotic resistance genes (ARGs) in a microbiome, is increasingly recognised as relevant to the development of clinically relevant antibiotic resistance. Many metagenomic studies have reported resistome differences between groups, often in connection with disease and/or antibiotic treatment. However, the consistency of resistome associations with antibiotic- and non-antibiotic-treated diseases has not been established. In this study, we re-analysed human gut microbiome data from 26 case-control studies to assess the link between disease and the resistome. RESULTS The human gut resistome is highly variable between individuals both within and between studies, but may also vary significantly between case and control groups even in the absence of large taxonomic differences. We found that for diseases commonly treated with antibiotics, namely cystic fibrosis and diarrhoea, patient microbiomes had significantly elevated ARG abundances compared to controls. Disease-associated resistome expansion was found even when ARG abundance was high in controls, suggesting ongoing and additive ARG acquisition in disease-associated strains. We also found a trend for increased ARG abundance in cases from some studies on diseases that are not treated with antibiotics, such as colorectal cancer. CONCLUSIONS Diseases commonly treated with antibiotics are associated with expanded gut resistomes, suggesting that historical exposure to antibiotics has exerted considerable selective pressure for ARG acquisition in disease-associated strains. Video Abstract.
Collapse
Affiliation(s)
- Simen Fredriksen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| | - Stef de Warle
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jos Boekhorst
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Li RD, Zheng WX, Zhang QR, Song Y, Liao YT, Shi FC, Wei XH, Zhou F, Zheng XH, Tan KY, Li QY. Longevity-Associated Core Gut Microbiota Mining and Effect of Mediated Probiotic Combinations on Aging Mice: Case Study of a Long-Lived Population in Guangxi, China. Nutrients 2023; 15:1609. [PMID: 37049450 PMCID: PMC10097023 DOI: 10.3390/nu15071609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
With an ageing population, healthy longevity is becoming an important scientific concern. The longevity phenomenon is closely related to the intestinal microflora and is highly complicated; it is challenging to identify and define the core gut microbiota associated with longevity. Therefore, in this study, 16S rRNA sequencing data were obtained from a total of 135 faecal samples collected as part of the latest sampling and pre-collection initiative in the Guangxi longevity area, and weighted gene co-expression network analysis (WGCNA) was used to find a mediumpurple3 network module significantly associated with the Guangxi longevity phenomenon. Five core genera, namely, Alistipes, Bacteroides, Blautia, Lachnospiraceae NK4A136 group, and Lactobacillus, were identified via network analysis and random forest (RF) in this module. Two potential probiotic strains, Lactobacillus fermentum and Bacteroides fragilis, were further isolated and screened from the above five core genera, and then combined and used as an intervention in naturally ageing mice. The results show a change in the key longevity gut microbiota in mice toward a healthy longevity state after the intervention. In addition, the results show that the probiotic combination effectively ameliorated anxiety and necrosis of hippocampal neuronal cells in senescent mice, improving their antioxidant capacity and reducing their inflammation levels. In conclusion, this longer-term study provides a new approach to the search for longevity hub microbiota. These results may also provide an important theoretical reference for the healthification of the intestinal microflora in the general population, and even the remodelling of the structure of the longevity-state intestinal microflora.
Collapse
Affiliation(s)
- Rui-Ding Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wen-Xuan Zheng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qin-Ren Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yao Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yan-Ting Liao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Feng-Cui Shi
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiao-Hui Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiao-Hua Zheng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai-Yan Tan
- Guangxi Zhuang Autonomous Region Institute of Product Quality Inspection, Nanning 530200, China
| | - Quan-Yang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
7
|
D'Amico F, Barone M, Brigidi P, Turroni S. Gut microbiota in relation to frailty and clinical outcomes. Curr Opin Clin Nutr Metab Care 2023; 26:219-225. [PMID: 36942920 DOI: 10.1097/mco.0000000000000926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW The gut microbiota is involved in several aspects of host health and disease, but its role is far from fully understood. This review aims to unveil the role of our microbial community in relation to frailty and clinical outcomes. RECENT FINDINGS Ageing, that is the continuous process of physiological changes that begin in early adulthood, is mainly driven by interactions between biotic and environmental factors, also involving the gut microbiota. Indeed, our gut microbial counterpart undergoes considerable compositional and functional changes across the lifespan, and ageing-related processes may be responsible for - and due to - its alterations during elderhood. In particular, a dysbiotic gut microbiota in the elderly population has been associated with the development and progression of several age-related disorders. SUMMARY Here, we first provide an overview of the lifespan trajectory of the gut microbiota in both health and disease. Then, we specifically focus on the relationship between gut microbiota and frailty syndrome, that is one of the major age-related burdens. Finally, examples of microbiome-based precision interventions, mainly dietary, prebiotic and probiotic ones, are discussed as tools to ameliorate the symptoms of frailty and its overlapping conditions (e.g. sarcopenia), with the ultimate goal of actually contributing to healthy ageing and hopefully promoting longevity.
Collapse
Affiliation(s)
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences
| | | | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The intestinal microbiome modulates the risk of several age-related chronic diseases and syndromes, including frailty and neurodegenerative diseases. Herein we provided an update on the influence of gut microbiota on physical and cognitive performance in older age and suggest microbiota-targeted interventions for healthy ageing. RECENT FINDINGS Low uniqueness index of the gut microbiome and high representation of Bacteroides are independently associated with mortality in older individuals, while the centenarian microbiome is characterized by high abundance of Lactobacilli and Bifidobacteria . Frailty syndrome, sarcopenia and cognitive decline are associated with reduced faecal microbiota biodiversity, reduced abundance of bacteria able to synthetize short-chain fatty acids (SCFA), including Faecalibacterium prausnitzii , and reduced faecal butyrate levels. Dietary intervention, especially involving Mediterranean diet, and exercise training seem to be associated with improved biodiversity of the microbiota, increased capacity of SCFA synthesis and, probably, protection against the onset of frailty and cognitive decline. SUMMARY The gut microbiota biodiversity and composition may reflect the different ageing trajectory, but further research is needed to understand potential independent and combined effects of environmental and lifestyle factors in older adults, especially from a clinical point of view.
Collapse
Affiliation(s)
- Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| | - Andrea Ticinesi
- Department of Medicine and Surgery
- Microbiome Research Hub, University of Parma
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
9
|
Importance of Microbiome of Fecal Samples Obtained from Adolescents with Different Weight Conditions on Resistance Gene Transfer. Microorganisms 2022; 10:microorganisms10101995. [PMID: 36296271 PMCID: PMC9611664 DOI: 10.3390/microorganisms10101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Antimicrobial resistance (AMR) is a relevant public health problem worldwide, and microbiome bacteria may contribute to the horizontal gene transfer associated with antimicrobial resistance. The microbiome of fecal samples from Mexican adolescents were analyzed and correlated with eating habits, and the presence of AMR genes on bacteria in the microbiome was evaluated. Fecal samples from adolescents were collected and processed to extract genomic DNA. An Illumina HiSeq 1500 system was used to determine resistance genes and the microbiome of adolescents through the amplification of gene resistance and the V3–V4 regions of RNA, respectively. Analysis of the microbiome from fecal samples taken from 18 obese, overweight, and normal-weight adolescents revealed that the Firmicutes was the most frequent phylum, followed by Bacteroidetes, Actinobacteria, Proteobacteria and Verrucomicrobia. The following species were detected as the most frequent in the samples: F. prausnitzii, P. cori, B. adolescentis, E. coli and A. muciniphila. The presence of Bacteroides, Prevotella and Ruminococcus was used to establish the enterotype; enterotype 1 was more common in women and enterotype 2 was more common in men. Twenty-nine AMR genes were found for β-lactamases, fluoroquinolones, aminoglycosides, macrolide, lincosamides, streptogramin (MLS), tetracyclines and sulfonamides. The presence of microorganisms in fecal samples that harbor AMR genes that work against antimicrobials frequently used for the treatment of microbial infections such as b-lactams, macrolides, aminoglycosides, MLS, and tetracyclines is of great concern, as these organisms may be an important reservoir for horizontal AMR gene transfer.
Collapse
|
10
|
Barone M, D'Amico F, Rampelli S, Brigidi P, Turroni S. Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mech Ageing Dev 2022; 206:111711. [PMID: 35868543 DOI: 10.1016/j.mad.2022.111711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome is undoubtedly a key modulator of human health, which can promote or impair homeostasis throughout life. This is even more relevant in old age, when there is a gradual loss of function in multiple organ systems, related to growth, metabolism, and immunity. Several studies have described changes in the gut microbiome across age groups up to the extreme limits of lifespan, including maladaptations that occur in the context of age-related conditions, such as frailty, neurodegenerative diseases, and cardiometabolic diseases. The gut microbiome can also interact bi-directionally with anti-age-related disease therapies, being affected and in turn influencing their efficacy. In this framework, the development of integrated microbiome-based intervention strategies, aimed at favoring a eubiotic configuration and trajectory, could therefore represent an innovative approach for the promotion of healthy aging and the achievement of longevity.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
11
|
Clavel T, Horz H, Segata N, Vehreschild M. Next steps after 15 stimulating years of human gut microbiome research. Microb Biotechnol 2022; 15:164-175. [PMID: 34818454 PMCID: PMC8719818 DOI: 10.1111/1751-7915.13970] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022] Open
Abstract
Gut microbiome research has bloomed over the past 15 years. We have learnt a lot about the complex microbial communities that colonize our intestine. Promising avenues of research and microbiome-based applications are being implemented, with the goal of sustaining host health and applying personalized disease management strategies. Despite this exciting outlook, many fundamental questions about enteric microbial ecosystems remain to be answered. Organizational measures will also need to be taken to optimize the outcome of discoveries happening at an extremely rapid pace. This article highlights our own view of the field and perspectives for the next 15 years.
Collapse
Affiliation(s)
- Thomas Clavel
- Functional Microbiome Research GroupInstitute of Medical MicrobiologyRWTH University HospitalAachenGermany
| | - Hans‐Peter Horz
- Phage Biology Research GroupInstitute of Medical MicrobiologyRWTH University HospitalAachenGermany
| | | | - Maria Vehreschild
- Department of Internal Medicine, Infectious DiseasesUniversity Hospital FrankfurtGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|