1
|
Steng K, Roy F, Kellner H, Moll J, Tittmann S, Frotscher J, Döring J. Functional diversity of the above-ground fungal community under long-term integrated, organic and biodynamic Vineyard Management. ENVIRONMENTAL MICROBIOME 2024; 19:89. [PMID: 39558428 PMCID: PMC11575106 DOI: 10.1186/s40793-024-00625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Sustainable agriculture increasingly emphasizes the importance of microbial communities in influencing plant health and productivity. In viticulture, understanding the impact of management practices on fungal communities is critical, given their role in disease dynamics, grape and wine quality. This study investigates the effects of integrated, organic, and biodynamic management practices on the diversity and function of fungal communities in a vineyard located in Geisenheim, Germany, focusing on above-ground parts such as bark, leaves, and grapes. RESULTS Our findings indicate that while overall fungal species richness did not significantly differ among management systems across various compartments, the composition of these communities was distinctly influenced by the type of management system. In particular, leaf and grape compartments showed notable variations in fungal community structure between integrated and organic/biodynamic management. No differences were observed between organic and biodynamic management. Integrated management demonstrated a significantly higher abundance of mycoparasites in comparison to organic and biodynamic management, primarily attributed to the increased presence of Sporobolomyces roseus, Sporobolomyces ellipsoideus and Rhodotorula glutinis. CONCLUSIONS The findings highlight the importance of management practices in shaping fungal community composition and function in vineyards. Although overall species richness remained unaffected, community composition and functional diversity varied, highlighting the potential for strategic microbiome management to enhance vineyard sustainability and plant health.
Collapse
Affiliation(s)
- Katharina Steng
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany.
| | - Friederike Roy
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763, Zittau, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Susanne Tittmann
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany
| | - Johanna Frotscher
- Department of Plant Breeding, Hochschule Geisenheim University, Von-Lade-Str. 1, 65366, Geisenheim, Germany
| | - Johanna Döring
- Department of General and Organic Viticulture, Hochschule Geisenheim University, Von-Lade- Str. 1, 65366, Geisenheim, Germany
| |
Collapse
|
2
|
Purahong W, Ji L, Wu YT. Community Assembly Processes of Deadwood Mycobiome in a Tropical Forest Revealed by Long-Read Third-Generation Sequencing. MICROBIAL ECOLOGY 2024; 87:66. [PMID: 38700528 PMCID: PMC11068674 DOI: 10.1007/s00248-024-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
Despite the importance of wood-inhabiting fungi on nutrient cycling and ecosystem functions, their ecology, especially related to their community assembly, is still highly unexplored. In this study, we analyzed the wood-inhabiting fungal richness, community composition, and phylogenetics using PacBio sequencing. Opposite to what has been expected that deterministic processes especially environmental filtering through wood-physicochemical properties controls the community assembly of wood-inhabiting fungal communities, here we showed that both deterministic and stochastic processes can highly contribute to the community assembly processes of wood-inhabiting fungi in this tropical forest. We demonstrated that the dynamics of stochastic and deterministic processes varied with wood decomposition stages. The initial stage was mainly governed by a deterministic process (homogenous selection), whereas the early and later decomposition stages were governed by the stochastic processes (ecological drift). Deterministic processes were highly contributed by wood physicochemical properties (especially macronutrients and hemicellulose) rather than soil physicochemical factors. We elucidated that fine-scale fungal-fungal interactions, especially the network topology, modularity, and keystone taxa of wood-inhabiting fungal communities, strongly differed in an initial and decomposing deadwood. This current study contributes to a better understanding of the ecological processes of wood-inhabiting fungi in tropical regions where the knowledge of wood-inhabiting fungi is highly limited.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
| | - Li Ji
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle (Saale), Germany
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
3
|
Ferlian O, Goldmann K, Bonkowski M, Dumack K, Wubet T, Eisenhauer N. Invasive earthworms shift soil microbial community structure in northern North American forest ecosystems. iScience 2024; 27:108889. [PMID: 38322986 PMCID: PMC10844042 DOI: 10.1016/j.isci.2024.108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Invasive earthworms colonize ecosystems around the globe. Compared to other species' invasions, earthworm invasions have received little attention. Previous studies indicated their tremendous effects on resident soil biota representing a major part of the terrestrial biodiversity. We investigated effects of earthworm invasion on soil microbial communities in three forests in North America by conducting DNA sequencing of soil bacteria, fungi, and protists in two soil depths. Our study shows that microbial diversity was lower in highly invaded forest areas. While bacterial diversity was strongly affected compared to fungi and protists, fungal community composition and family dominance were strongly affected compared to bacteria and protists. We found most species specialized on invasion in fungi, mainly represented by saprotrophs. Comparably, few protist species, mostly bacterivorous, were specialized on invasion. As one of the first observational studies, we investigated earthworm invasion on three kingdoms showing distinct taxa- and trophic level-specific responses to earthworm invasion.
Collapse
Affiliation(s)
- Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| | - Kezia Goldmann
- UFZ-Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | - Tesfaye Wubet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Kipping L, Jehmlich N, Moll J, Noll M, Gossner MM, Van Den Bossche T, Edelmann P, Borken W, Hofrichter M, Kellner H. Enzymatic machinery of wood-inhabiting fungi that degrade temperate tree species. THE ISME JOURNAL 2024; 18:wrae050. [PMID: 38519103 PMCID: PMC11022342 DOI: 10.1093/ismejo/wrae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Deadwood provides habitat for fungi and serves diverse ecological functions in forests. We already have profound knowledge of fungal assembly processes, physiological and enzymatic activities, and resulting physico-chemical changes during deadwood decay. However, in situ detection and identification methods, fungal origins, and a mechanistic understanding of the main lignocellulolytic enzymes are lacking. This study used metaproteomics to detect the main extracellular lignocellulolytic enzymes in 12 tree species in a temperate forest that have decomposed for 8 ½ years. Mainly white-rot (and few brown-rot) Basidiomycota were identified as the main wood decomposers, with Armillaria as the dominant genus; additionally, several soft-rot xylariaceous Ascomycota were identified. The key enzymes involved in lignocellulolysis included manganese peroxidase, peroxide-producing alcohol oxidases, laccase, diverse glycoside hydrolases (cellulase, glucosidase, xylanase), esterases, and lytic polysaccharide monooxygenases. The fungal community and enzyme composition differed among the 12 tree species. Ascomycota species were more prevalent in angiosperm logs than in gymnosperm logs. Regarding lignocellulolysis as a function, the extracellular enzyme toolbox acted simultaneously and was interrelated (e.g. peroxidases and peroxide-producing enzymes were strongly correlated), highly functionally redundant, and present in all logs. In summary, our in situ study provides comprehensive and detailed insight into the enzymatic machinery of wood-inhabiting fungi in temperate tree species. These findings will allow us to relate changes in environmental factors to lignocellulolysis as an ecosystem function in the future.
Collapse
Affiliation(s)
- Lydia Kipping
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
- Institute for Bioanalysis, University of Applied Sciences Coburg, 96450 Coburg, Germany
| | - Nico Jehmlich
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research—UFZ GmbH, 04318 Leipzig, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research—UFZ GmbH, 06120 Halle (Saale), Germany
| | - Matthias Noll
- Institute for Bioanalysis, University of Applied Sciences Coburg, 96450 Coburg, Germany
- Department of Soil Ecology, University of Bayreuth, 95448 Bayreuth, Germany
| | - Martin M Gossner
- Forest Entomology, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, 8092 Zürich, Switzerland
| | - Tim Van Den Bossche
- VIB—UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
| | - Pascal Edelmann
- Department of Ecology and Ecosystem Management, Center of School of Life and Food Sciences Weihenstephan, TU München, 85354 Freising, Germany
| | - Werner Borken
- Department of Soil Ecology, University of Bayreuth, 95448 Bayreuth, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, 02763 Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, 02763 Zittau, Germany
| |
Collapse
|
5
|
Ji N, Liang D, Clark LV, Sacks EJ, Kent AD. Host genetic variation drives the differentiation in the ecological role of the native Miscanthus root-associated microbiome. MICROBIOME 2023; 11:216. [PMID: 37777794 PMCID: PMC10541700 DOI: 10.1186/s40168-023-01646-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Microbiome recruitment is influenced by plant host, but how host plant impacts the assembly, functions, and interactions of perennial plant root microbiomes is poorly understood. Here we examined prokaryotic and fungal communities between rhizosphere soils and the root endophytic compartment in two native Miscanthus species (Miscanthus sinensis and Miscanthus floridulus) of Taiwan and further explored the roles of host plant on root-associated microbiomes. RESULTS Our results suggest that host plant genetic variation, edaphic factors, and site had effects on the root endophytic and rhizosphere soil microbial community compositions in both Miscanthus sinensis and Miscanthus floridulus, with a greater effect of plant genetic variation observed for the root endophytic communities. Host plant genetic variation also exerted a stronger effect on core prokaryotic communities than on non-core prokaryotic communities in each microhabitat of two Miscanthus species. From rhizosphere soils to root endophytes, prokaryotic co-occurrence network stability increased, but fungal co-occurrence network stability decreased. Furthermore, we found root endophytic microbial communities in two Miscanthus species were more strongly driven by deterministic processes rather than stochastic processes. Root-enriched prokaryotic OTUs belong to Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Sphingobacteriia, and [Saprospirae] both in two Miscanthus species, while prokaryotic taxa enriched in the rhizosphere soil are widely distributed among different phyla. CONCLUSIONS We provide empirical evidence that host genetic variation plays important roles in root-associated microbiome in Miscanthus. The results of this study have implications for future bioenergy crop management by providing baseline data to inform translational research to harness the plant microbiome to sustainably increase agriculture productivity. Video Abstract.
Collapse
Affiliation(s)
- Niuniu Ji
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Di Liang
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lindsay V Clark
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik J Sacks
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Angela D Kent
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Institute for Sustainability, Energy and Environment, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Shumskaya M, Lorusso N, Patel U, Leigh M, Somervuo P, Schigel D. MycoPins: a metabarcoding-based method to monitor fungal colonization of fine woody debris. MycoKeys 2023; 96:77-95. [PMID: 37214177 PMCID: PMC10196935 DOI: 10.3897/mycokeys.96.101033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/02/2023] [Indexed: 05/24/2023] Open
Abstract
The MycoPins method described here is a rapid and affordable protocol to monitor early colonization events in communities of wood-inhabiting fungi in fine woody debris. It includes easy to implement field sampling techniques and sample processing, followed by data processing, and analysis of the development of early dead wood fungal communities. The method is based on fieldwork from a time series experiment on standard sterilized colonization targets followed by the metabarcoding analysis and automated molecular identification of species. This new monitoring method through its simplicity, moderate costs, and scalability paves a way for a broader and scalable project pipeline. MycoPins establishes a standard routine for research stations or regularly visited field sites for monitoring of fungal colonization of woody substrates. The routine uses widely available consumables and therefore presents a unifying method for monitoring of fungi of this type.
Collapse
Affiliation(s)
- Maria Shumskaya
- Department of Biology, Kean University, Union, USAKean UniversityUnionUnited States of America
| | - Nicholas Lorusso
- Department of Biology, Kean University, Union, USAKean UniversityUnionUnited States of America
- University of North Texas at Dallas, Dallas, USAUniversity of North Texas at DallasDallasUnited States of America
| | - Urvi Patel
- Department of Biology, Kean University, Union, USAKean UniversityUnionUnited States of America
| | - Madison Leigh
- Department of Biology, Kean University, Union, USAKean UniversityUnionUnited States of America
| | - Panu Somervuo
- Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandUniversity of HelsinkiHelsinkiFinland
| | - Dmitry Schigel
- Biological and Environmental Sciences, University of Helsinki, Helsinki, FinlandUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
7
|
Moll J, Hoppe B. Evaluation of primers for the detection of deadwood-inhabiting archaea via amplicon sequencing. PeerJ 2022; 10:e14567. [PMID: 36573238 PMCID: PMC9789694 DOI: 10.7717/peerj.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Archaea have been reported from deadwood of a few different tree species in temperate and boreal forest ecosystems in the past. However, while one of their functions is well linked to methane production any additional contribution to wood decomposition is not understood and underexplored which may be also attributed to lacking investigations on their diversity in this substrate. With this current work, we aim at encouraging further investigations by providing aid in primer choice for DNA metabarcoding using Illumina amplicon sequencing. We tested 16S primer pairs on genomic DNA extracted from woody tissue of four temperate deciduous tree species. Three primer pairs were specific to archaea and one prokaryotic primer pair theoretically amplifies both, bacterial and archaeal DNA. Methanobacteriales and Methanomassiliicoccales have been consistently identified as dominant orders across all datasets but significant variability in ASV richness was observed using different primer combinations. Nitrososphaerales have only been identified when using archaea-specific primer sets. In addition, the most commonly applied primer combination targeting prokaryotes in general yielded the lowest relative proportion of archaeal sequences per sample, which underlines the fact, that using target specific primers unraveled a yet unknown diversity of archaea in deadwood. Hence, archaea seem to be an important group of the deadwood-inhabiting community and further research is needed to explore their role during the decomposition process.
Collapse
Affiliation(s)
- Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research—UFZ, Halle (Saale), Germany
| | - Björn Hoppe
- Institute for National and International Plant Health, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
8
|
Purahong W, Tanunchai B, Muszynski S, Maurer F, Wahdan SFM, Malter J, Buscot F, Noll M. Cross-kingdom interactions and functional patterns of active microbiota matter in governing deadwood decay. Proc Biol Sci 2022; 289:20220130. [PMID: 35538788 PMCID: PMC9091849 DOI: 10.1098/rspb.2022.0130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Microbial community members are the primary microbial colonizers and active decomposers of deadwood. This study placed sterilized standardized beech and spruce sapwood specimens on the forest ground of 8 beech- and 8 spruce-dominated forest sites. After 370 days, specimens were assessed for mass loss, nitrogen (N) content and 15N isotopic signature, hydrolytic and lignin-modifying enzyme activities. Each specimen was incubated with bromodeoxyuridine (BrdU) to label metabolically active fungal and bacterial community members, which were assessed using amplicon sequencing. Fungal saprotrophs colonized the deadwood accompanied by a distinct bacterial community that was capable of cellulose degradation, aromatic depolymerization, and N2 fixation. The latter were governed by the genus Sphingomonas, which was co-present with the majority of saprotrophic fungi regardless of whether beech or spruce specimens were decayed. Moreover, the richness of the diazotrophic Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium group was significantly correlated with mass loss, N content and 15N isotopic signature. By contrast, presence of obligate predator Bdellovibrio spp. shifted bacterial community composition and were linked to decreased beech deadwood decay rates. Our study provides the first account of the composition and function of metabolically active wood-colonizing bacterial and fungal communities, highlighting cross-kingdom interactions during the early and intermediate stages of wood decay.
Collapse
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany.,Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Sarah Muszynski
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Florian Maurer
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany.,Department of Botany, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Jonas Malter
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| | - François Buscot
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, D-06120 Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Matthias Noll
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.,Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany
| |
Collapse
|
9
|
Moll J, Roy F, Bässler C, Heilmann-Clausen J, Hofrichter M, Kellner H, Krabel D, Schmidt JH, Buscot F, Hoppe B. First Evidence That Nematode Communities in Deadwood Are Related to Tree Species Identity and to Co-Occurring Fungi and Prokaryotes. Microorganisms 2021; 9:microorganisms9071454. [PMID: 34361890 PMCID: PMC8304250 DOI: 10.3390/microorganisms9071454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Nematodes represent a diverse and ubiquitous group of metazoans in terrestrial environments. They feed on bacteria, fungi, plants, other nematodes or parasitize a variety of animals and hence may be considered as active members of many food webs. Deadwood is a structural component of forest ecosystems which harbors many niches for diverse biota. As fungi and bacteria are among the most prominent decomposing colonizers of deadwood, we anticipated frequent and diverse nematode populations to co-occur in such ecosystems. However, knowledge about their ability to colonize this habitat is still limited. We applied DNA-based amplicon sequencing (metabarcoding) of the 18S rRNA gene to analyze nematode communities in sapwood and heartwood of decaying logs from 13 different tree species. We identified 247 nematode ASVs (amplicon sequence variants) from 27 families. Most of these identified families represent bacterial and fungal feeders. Their composition strongly depended on tree species identity in both wood compartments. While pH and water content were the only wood properties that contributed to nematodes' distribution, co-occurring fungal and prokaryotic (bacteria and archaea) α- and β-diversities were significantly related to nematode communities. By exploring thirteen different tree species, which exhibit a broad range of wood characteristics, this study provides first and comprehensive insights into nematode diversity in deadwood of temperate forests and indicates connectivity to other wood-inhabiting organisms.
Collapse
Affiliation(s)
- Julia Moll
- Helmholtz Centre for Environmental Research—UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany; (F.R.); (F.B.)
- Correspondence: (J.M.); (B.H.)
| | - Friederike Roy
- Helmholtz Centre for Environmental Research—UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany; (F.R.); (F.B.)
- Institute of Forest Botany, Technische Universität Dresden, 01737 Tharandt, Germany;
| | - Claus Bässler
- Department of Conservation Biology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Department of Research, National Park Bavarian Forest, 94481 Grafenau, Germany
| | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Martin Hofrichter
- Institute of Environmental Biotechnology, Technische Universität Dresden, IHI Zittau, 02763 Zittau, Germany; (M.H.); (H.K.)
| | - Harald Kellner
- Institute of Environmental Biotechnology, Technische Universität Dresden, IHI Zittau, 02763 Zittau, Germany; (M.H.); (H.K.)
| | - Doris Krabel
- Institute of Forest Botany, Technische Universität Dresden, 01737 Tharandt, Germany;
| | - Jan Henrik Schmidt
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany;
| | - François Buscot
- Helmholtz Centre for Environmental Research—UFZ, Department of Soil Ecology, 06120 Halle (Saale), Germany; (F.R.); (F.B.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle—Jena—Leipzig, 04103 Leipzig, Germany
| | - Björn Hoppe
- Institute for National and International Plant Health, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Correspondence: (J.M.); (B.H.)
| |
Collapse
|