1
|
Takei S, Teramoto K, Fujimura J, Fujiwara M, Suzuki M, Fukui Y, Sekiguchi Y, Kawakami T, Chonan M, Wakita M, Horiuchi Y, Miida T, Naito T, Kirikae T, Tada T, Tabe Y. Isolation and identification of Wickerhamiella tropicalis from blood culture by MALDI-MS. Front Cell Infect Microbiol 2024; 14:1361432. [PMID: 38510957 PMCID: PMC10953818 DOI: 10.3389/fcimb.2024.1361432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Wickerhamiella is a genus of budding yeast that is mainly isolated from environmental samples, and 40 species have been detected. The yeast isolated from human clinical samples usually only contain three species: W. infanticola, W. pararugosa and W. sorbophila. In this study, we isolated W. tropicalis from a blood sample of a six-year-old female with a history of B-cell precursor lymphoblastic leukemia in Japan in 2022. Though the strain was morphologically identified as Candida species by routine microbiological examinations, it was subsequently identified as W. tropicalis by sequencing the internal transcribed spacer (ITS) of ribosomal DNA (rDNA). The isolate had amino acid substitutions in ERG11 and FKS1 associated with azole and echinocandin resistance, respectively, in Candida species and showed intermediate-resistant to fluconazole and micafungin. The patient was successfully treated with micafungin. Furthermore, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) detected three novel peaks that are specific for W. tropicalis, indicating that MALDI-MS analysis is useful for rapid detection of Wickerhamiella species in routine microbiological examinations.
Collapse
Affiliation(s)
- Satomi Takei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of MALDI-TOF MS Practical Application Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kanae Teramoto
- Department of MALDI-TOF MS Practical Application Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Analytical & Measurement Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Junya Fujimura
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Megumi Fujiwara
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mai Suzuki
- Department of General Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yukiko Fukui
- Department of General Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takaaki Kawakami
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Masayoshi Chonan
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Mitsuru Wakita
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of MALDI-TOF MS Practical Application Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of General Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Teruo Kirikae
- Department of MALDI-TOF MS Practical Application Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Microbiome Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of MALDI-TOF MS Practical Application Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Wu R, Li S, Liu Y, Zhang H, Liu D, Liu Y, Chen W, Wang F. A high proportion of caseous necrosis, abscess, and granulation tissue formation in spinal tuberculosis. Front Microbiol 2023; 14:1230572. [PMID: 37645226 PMCID: PMC10461047 DOI: 10.3389/fmicb.2023.1230572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023] Open
Abstract
The special blood circulation, anatomy, and tissue structure of the spine may lead to significant differences in pathological features and drug resistance between spinal tuberculosis and pulmonary tuberculosis. Here, we collected 168 spinal tuberculosis cases and 207 pulmonary tuberculosis cases, and compared their clinical and pathological features as well as drug resistance. From the anatomical location, the highest incidence was of lumbar tuberculosis, followed by thoracic tuberculosis. PET-CT scans showed increased FDG uptake in the diseased vertebrae, discernible peripheral soft tissue shadow, visible internal capsular shadow, and an abnormal increase in FDG uptake. MRI showed infectious lesions in the diseased vertebral body, formation of paravertebral and bilateral psoas muscle abscess, and edema of surrounding soft tissues. As with control tuberculosis, the typical pathological features of spinal tuberculosis were chronic granulomatous inflammation with caseous necrosis. The incidence of granulomas was not statistically different between the groups. However, the proportions of caseous necrosis, acute inflammation, abscess, exudation, and granulation tissue formation in the spinal tuberculosis group were all significantly increased relative to the control tuberculosis group. Compared to the control tuberculosis group, the incidences of resistance to rifampicin (RFP) + isoniazid (INH) + streptomycin (STR) and INH + ethambutol (EMB) were lower in the spinal tuberculosis group, while the incidences of resistance to RFP + INH + EMB and RFP + EMB were higher. Moreover, we also found some differences in drug-resistance gene mutations. In conclusion, there are noticeable differences between spinal Mycobacterium tuberculosis and pulmonary tuberculosis in pathological characteristics, drug resistance, and drug resistance gene mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fenghua Wang
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Shankaregowda R, Allegretti YH, Sumana MN, Rao MR, Raphael E, Mahesh PA, Riley LW. Whole-Genome Sequencing of Mycobacterium tuberculosis Isolates from Diabetic and Non-Diabetic Patients with Pulmonary Tuberculosis. Microorganisms 2023; 11:1881. [PMID: 37630441 PMCID: PMC10457832 DOI: 10.3390/microorganisms11081881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
The association of tuberculosis and type 2 diabetes mellitus has been a recognized re-emerging challenge in management of the convergence of the two epidemics. Though much of the literature has studied this association, there is less knowledge in the field of genetic diversities that might occur in strains infecting tuberculosis patients with and without diabetes. Our study focused on determining the extent of diversity of genotypes of Mycobacterium tuberculosis in both these categories of patients. We subjected 55 M. tuberculosis isolates from patients diagnosed with pulmonary TB with and without type 2 diabetes mellitus to whole-genome sequencing on Illumina Hi Seq platform. The most common lineage identified was lineage 1, the Indo-Oceanic lineage (n = 22%), followed by lineage 4, the Euro-American lineage (n = 18, 33%); lineage 3, the East-African Indian lineage (n = 13, 24%); and lineage 2, the East-Asian lineage (n = 1, 2%). There were no significant differences in the distribution of lineages in both diabetics and non-diabetics in the South Indian population, and further studies involving computational analysis and comparative transcriptomics are needed to provide deeper insights.
Collapse
Affiliation(s)
- Ranjitha Shankaregowda
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA 94720, USA; (R.S.); (L.W.R.)
- Department of Microbiology, JSS Medical College and Hospital, JSS AHER, Mysore 570015, India; (M.N.S.); (M.R.R.)
| | - Yuan Hu Allegretti
- School of Public Health, Division of Epidemiology, University of California, Berkeley, CA 94720, USA;
| | | | - Morubagal Raghavendra Rao
- Department of Microbiology, JSS Medical College and Hospital, JSS AHER, Mysore 570015, India; (M.N.S.); (M.R.R.)
| | - Eva Raphael
- Division of Epidemiology and Biostatistics, School of Medicine, University of California, San Fransico, CA 94143, USA;
| | - Padukudru Anand Mahesh
- Department of Respiratory Medicine, JSS Medical College and Hospital, JSS AHER, Mysore 570015, India
| | - Lee W. Riley
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, CA 94720, USA; (R.S.); (L.W.R.)
| |
Collapse
|
4
|
Ren Y, Chen B, Zhao J, Tan X, Chen X, Zhou L, Wang F, Peng Y, Jiang J. Trends of Rifampicin Resistance in Patients with Pulmonary Tuberculosis: A Longitudinal Analysis Based on Drug Resistance Screening in Eastern China Between 2015 and 2019. Infect Drug Resist 2022; 15:7707-7717. [PMID: 36597456 PMCID: PMC9805726 DOI: 10.2147/idr.s394089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
Objective To understand the trend of overall rifampicin resistance rates for tuberculosis in Zhejiang Province between 2015 and 2019. Methods The basic demographic information of patients with tuberculosis who were screened for drug resistance in Zhejiang Province between January 1, 2015 and December 31, 2019 was collected through the national Tuberculosis Information Management System. The data were processed and analyzed using IBM SPSS 26.0 and GeoDa 1.14 software. Results The total rifampicin resistance rate was 5.9% in 53,893 validated cases of drug resistance screening conducted in patients with pulmonary tuberculosis in Zhejiang Province during the study period. There was a decreasing trend in the rifampicin resistance rate in both initial and re-treated patients (P<0.001), but the rifampicin resistance rate was higher in re-treated TB patients than in TB patients receiving their initial treatment (11.4% vs 4.2%). The rate of drug resistance steadily decreased in all prefectures, and there was a significant upward trend in the use of the Xpert MTB/RIF rapid assay. An increasing trend was also identified in the rate of rifampicin and ofloxacin co-resistance (P<0.001). Conclusion The overall rate of rifampin resistance in patients with tuberculosis in Zhejiang Province in the past five years has shown a decreasing trend, but the rate of resistance to ofloxacin was high. Resistance testing to fluoroquinolones should be carried out as early as possible in patients whose diagnosis results indicate rifampin resistance, and more effective second-line treatment plans should be developed based on the results of this testing.
Collapse
Affiliation(s)
- Yanli Ren
- School of Public Health, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Bin Chen
- Zhejiang Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Jiaying Zhao
- School of Public Health, Xiamen University, Fujian, People’s Republic of China
| | - Xiaohua Tan
- School of Public Health, Hangzhou Normal University, Hangzhou, People’s Republic of China
| | - Xinyi Chen
- Zhejiang Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Lin Zhou
- Zhejiang Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Fei Wang
- Zhejiang Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| | - Ying Peng
- Zhejiang Center for Disease Control and Prevention, Hangzhou, People’s Republic of China,Correspondence: Ying Peng; Jianmin Jiang, Email ;
| | - Jianmin Jiang
- School of Public Health, Hangzhou Normal University, Hangzhou, People’s Republic of China,Zhejiang Center for Disease Control and Prevention, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Wang Z, Guo T, Jiang T, Zhao Z, Zu X, li L, Zhang Q, Hou Y, Song K, Xue Y. Regional distribution of Mycobacterium tuberculosis infection and resistance to rifampicin and isoniazid as determined by high-resolution melt analysis. BMC Infect Dis 2022; 22:812. [PMCID: PMC9620668 DOI: 10.1186/s12879-022-07792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Identifying the transmission mode and resistance mechanism of Mycobacterium tuberculosis (MTB) is key to prevent disease transmission. However, there is a lack of regional data. Therefore, the aim of this study was to identify risk factors associated with the transmission of MTB and regional patterns of resistance to isoniazid (INH) and rifampicin (RFP), as well as the prevalence of multidrug-resistant tuberculosis (MDR-TB). Methods High-resolution melt (HRM) analysis was conducted using sputum, alveolar lavage fluid, and pleural fluid samples collected from 17,515 patients with suspected or confirmed MTB infection in the downtown area and nine counties of Luoyang City from 2019 to 2021. Results Of the 17,515 patients, 82.6% resided in rural areas, and 96.0% appeared for an initial screening. The HRM positivity rate was 16.8%, with a higher rate in males than females (18.0% vs. 14.1%, p < 0.001). As expected, a positive sputum smear was correlated with a positive result for HRM analysis. By age, the highest rates of MTB infection occurred in males (22.9%) aged 26–30 years and females (28.1%) aged 21–25. The rates of resistance to RFP and INH and the incidence of MDR were higher in males than females (20.5% vs. 16.1%, p < 0.001, 15.9% vs. 12.0%, p < 0.001 and 12.9% vs. 10.2%, p < 0.001, respectively). The HRM positivity rate was much higher in previously treated patients than those newly diagnosed for MTB infection. Notably, males at the initial screening had significantly higher rates of HRM positive, INH resistance, RFP resistance, and MDR-TB than females (all, p < 0.05), but not those previously treated for MTB infection. The HRM positivity and drug resistance rates were much higher in the urban vs. rural population. By multivariate analyses, previous treatment, age < 51 years, residing in an urban area, and male sex were significantly and positively associated with drug resistance after adjusting for smear results and year of testing. Conclusion Males were at higher risks for MTB infection and drug resistance, while a younger age was associated with MTB infection, resistance to INH and RFP, and MDR-TB. Further comprehensive monitoring of resistance patterns is needed to control the spread of MTB infection and manage drug resistance locally.
Collapse
Affiliation(s)
- Zhenzhen Wang
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China ,grid.453074.10000 0000 9797 0900School of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang, 471000 China
| | - Tengfei Guo
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China
| | - Tao Jiang
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China
| | - Zhanqin Zhao
- grid.453074.10000 0000 9797 0900Animal Science and Technology, Henan University of Science and Technology, Luo Yang, 471000 China
| | - Xiangyang Zu
- grid.453074.10000 0000 9797 0900School of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang, 471000 China
| | - Long li
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China
| | - Qing Zhang
- grid.453074.10000 0000 9797 0900The First Affiliated Hospital and Clinical Medical College, Henan University of Science and Technology, 471000 Luo Yang, China
| | - Yi Hou
- Luoyang City CDC, Luo Yang, 471000 China
| | - Kena Song
- grid.453074.10000 0000 9797 0900School of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang, 471000 China
| | - Yun Xue
- grid.453074.10000 0000 9797 0900School of Medical Technology and Engineering, Henan University of Science and Technology, Luo Yang, 471000 China
| |
Collapse
|