1
|
Kewessa G, Dejene T, Martín-Pinto P. Soil fungal communities under plantations of different Eucalyptus species in Ethiopia: Insights for evidence-based management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179663. [PMID: 40382957 DOI: 10.1016/j.scitotenv.2025.179663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
The rapid expansion of Eucalyptus plantations in Ethiopia is driven by the increasing demand for woody products, raising concerns about their ecological impact. While conserving native forests remains a priority, Eucalyptus plantations provide alternative sources of forest products and income, helping to reduce pressure on native ecosystems. However, the ecological implications of these plantations, particularly their impact on soil fungal communities, key players in nutrient cycling and ecosystem functioning, remain poorly understood. This study investigates soil fungal community dynamics in Eucalyptus globulus and Eucalyptus camaldulensis plantations across diverse environmental gradients in Ethiopia. Soil samples were collected from 24 plots, and fungal DNA was extracted and sequenced using Illumina MiSeq technology, targeting the ITS2 region. Taxonomic classification and functional guild assignment were performed. Although both plantation types supported a high level of fungal richness and diversity, fungal community composition significantly varied by the Eucalyptus species. Environmental factors, including elevation, precipitation, and temperature, were linked to variations in fungal community composition, creating distinct ecological niches. The main indicator taxa under E. camaldulensis were the species Yurkovia mendeliana, Fusarium oxysporum, Talaromyces solicola, and Westerdykella reniformis, as well as an unidentified member of the class Chytridiomycetes. Under E. globulus, the main indicator taxa were the species Saitozyma podzolica, Brachiosphaera tropicalis, Pseudoacremonium sacchari, and Preussia flanaganii, along with an unidentified member of the order Hypocreales. Although the species Archaeorhizomyces finlayi and members of the families Hydnangiaceae and Chaetomiaceae and the order Sordariales were present in both plantation types, their relative abundances differed significantly between the two species. Our findings highlight that expanding Eucalyptus plantations support soil fungal diversity. A mosaic landscape combining the two species at the landscape level could enhance fungal biodiversity and ecosystem functionality. Understanding these fungal associations provides valuable insights for evidence-based plantation management and sustainable forestry practices in Ethiopia.
Collapse
Affiliation(s)
- Gonfa Kewessa
- Sustainable Forest Management Research Institute, University of Valladolid, Spain; School of Natural Resources, Guder Mamo Mezemir Campus, Ambo University, Ambo, Ethiopia
| | - Tatek Dejene
- Sustainable Forest Management Research Institute, University of Valladolid, Spain; Ethiopian Forestry Development, Addis Ababa, Ethiopia
| | - Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Spain.
| |
Collapse
|
2
|
Jian J, Feng S, Xu Y, Jia M, Huang H, Zheng X, Liu H, Xu H. Bacterial community assembly processes mediate soil functioning under cadmium stress in the agroecosystem. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138496. [PMID: 40339367 DOI: 10.1016/j.jhazmat.2025.138496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/19/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
Elucidating the effects of community assembly processes on soil functioning represents a crucial challenge in theoretical ecology, particularly under cadmium (Cd) stress, where our understanding remains limited. In this study, we therefore used amplicon sequencing and a quantitative-PCR-based chip to analyze the changes in bacterial community characteristics, soil functioning and their interrelationships in agroecosystems under different levels of Cd stress. The results indicated that Cd stress led to a decline in community diversity (Z-score), network complexity and stability, an increase in species turnover, and a regulation of community structure. Cd stress significantly increased the relative importance of dispersal limitation and homogeneous selection, reducing community drift and rendering the community more deterministic. Finally, Cd stress significantly reduced soil functional potential (Z-score) and soil functional stability (Z-score), impairing soil carbon, nitrogen, phosphorus, and sulfur cycling. It is noteworthy that correlation and random forest analyses revealed significant effects of specific community assembly processes, including dispersal limitation, homogeneous selection, drift (and others), on changes in soil functional potential (Z-score). The results emphasize the pivotal role of community assembly processes in dictating soil functioning under Cd stress, thereby offering novel insights into the comprehension of microbial-driven mechanisms governing soil functioning.
Collapse
Affiliation(s)
- Jiannan Jian
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Shuang Feng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yi Xu
- Mianzhu Municipal Bureau of Agriculture and Rural Affairs, Mianzhu, Sichuan 618200, PR China
| | - Maohang Jia
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Xin Zheng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, Sichuan 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, PR China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
3
|
Gu H, Hu X, Zhang J, Li Y, Yu Z, Liu J, Sui Y, Jin J, Liu X, Wang G. Biogeographic patterns of viral communities, ARG profiles and virus-ARG associations in adjacent paddy and upland soils across black soil region. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136909. [PMID: 39700951 DOI: 10.1016/j.jhazmat.2024.136909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Biogeographic distribution of prokaryotic and eukaryotic communities has been extensively studied. Yet, our knowledge of viral biogeographic patterns, the corresponding driving factors and the virus-resistome associations is still limited. Here, using metagenomic analysis, we explored the viral communities and profiles of antibiotic resistance genes (ARGs) in 30 fields of paddy (rice soils, RS) and upland soils (corn soils, CS) at a regional scale across black soil region of Northeast China. Our finding revealed that viral communities displayed significant distance-decay relationships, and environmental variables largely dominated viral community patterns in agricultural soils. Compared to RS, viral community in CS harbored significantly higher viral α-diversity and distinct β-diversity, and exhibited a higher turnover along with environmental gradients and spatial distance. However, no clear latitudinal diversity gradient (LDG) pattern was observed in viral diversity over large-scale sampling for RS and CS, and heterogeneous distribution of soil viruses was well maintained over large-scale sampling. Soil pH was the important influential factor driving viral community, and the high soil nutrient levels negatively affected viral diversity. Uroviricota, Nucleocytoviricota and Artverviricota were the main viral phyla in agricultural soils, and virus-host linkages spanned 17 prokaryotic phyla, including Actinobacteriota and Proteobacteria. Besides, 2578 ARG subtypes were retrieved and conferred resistance to 27 types of antibiotics, in which multidrug was the predominant ARG type in Mollisols. Procrustes analysis showed the significant contribution of viral community to ARG profiles, which was more obvious in CS compared to RS. We identified 9.61 % and 11.4 % of soil viruses carried at least one ARG can infect multi-host in RS and CS. Furthermore, 43 and 77 complete viral metagenome-assembled genome (vMAG) were reconstructed in RS and CS, respectively. Notably, the lysogenic phages in RS contained 29.7 % of ARGs, a higher proportion than the 12.5 % found in CS. Overall, our study underscored the prevalent distribution of viral communities and ARG profiles at a large spatial scale, and the distinct ecological strategies of virus-ARG associations in adjacent paddy and upland soils.
Collapse
Affiliation(s)
- Haidong Gu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaojing Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
| | - Jinyuan Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yansheng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yueyu Sui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
4
|
Lu J, Qing C, Huang X, Zeng J, Zheng Y, Xia P. Seasonal dynamics and driving mechanisms of microbial biogenic elements cycling function, assembly process, and co-occurrence network in plateau lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175510. [PMID: 39147055 DOI: 10.1016/j.scitotenv.2024.175510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Microbial community diversity significantly varies with seasonality. However, little is known about seasonal variation of microbial community functions in lake sediments and their associated environmental influences. In this study, metagenomic sequencing of sediments collected from winter, summer, and autumn from Caohai Lake, Guizhou Plateau, were used to evaluate the composition and function of sediment microbial communities, the potential interactions of functional genes, key genes associated with seasons, and community assembly mechanisms. The average concentrations of nitrogen (TN) and phosphorus (TP) in lake sediments were higher, which were 6.136 and 0.501 g/kg, respectively. TN and organic matter (OM) were the primary factors associated with sediment community composition and functional profiles. The diversity and structure of the microbial communities varied with seasons, and Proteobacteria relative abundances were significantly lower in summer than in other seasons (58.43-44.12 %). Seasons were also associated with the relative abundances of functional genes, and in particular korA, metF, narC, nrfA, pstC/S, and soxB genes. Network complexity was highest in the summer and key genes in the network also varied across seasons. Neutral community model analysis revealed that the assembly mechanisms related to carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycle-related genes were primarily associated with random processes. In summary, diverse functional genes were identified in lake sediments and exhibited evidence for synergistic interactions (Positive proportion: 74.91-99.82 %), while seasonal factors influenced their distribution. The results of this study provide new insights into seasonal impacts on microbial-driven biogeochemical cycling in shallow lakes.
Collapse
Affiliation(s)
- Jiaowei Lu
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Chun Qing
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Xianfei Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Jin Zeng
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yikun Zheng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Pinhua Xia
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
5
|
Zhang B, Zhu S, Li J, Fu F, Guo L, Li J, Zhang Y, Liu Y, Chen G, Zhang G. Elevational distribution patterns and drivers factors of fungal community diversity at different soil depths in the Abies georgei var. smithii forests on Sygera Mountains, southeastern Tibet, China. Front Microbiol 2024; 15:1444260. [PMID: 39184024 PMCID: PMC11342059 DOI: 10.3389/fmicb.2024.1444260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Soil fungal communities play a crucial role in maintaining the ecological functions of alpine forest soil ecosystems. However, it is currently unclear how the distribution patterns of fungal communities in different soil layers of alpine forests will change along the elevational gradients. Material and methods Therefore, Illumina MiSeq sequencing technology was employed to investigate fungal communities in three soil layers (0-10, 10-20, and 20-30 cm) along an elevational gradient (3500 m to 4300 m) at Sygera Mountains, located in Bayi District, Nyingchi City, Tibet. Results and discussion The results indicated that: 1) Soil depth had a greater impact on fungal diversity than elevation, demonstrating a significant reduction in fungal diversity with increased soil depth but showing no significant difference with elevation changes in all soil layers. Within the 0-10 cm soil layer, both Basidiomycota and Ascomycota co-dominate the microbial community. However, as the soil depth increases to 10-20 and 20-30 cm soil layers, the Basidiomycota predominantly dominates. 2) Deterministic processes were dominant in the assembly mechanism of the 0-10 cm fungal community and remained unchanged with increasing elevation. By contrast, the assembly mechanisms of the 10-20 and 20-30 cm fungal communities shifted from deterministic to stochastic processes as elevation increased. 3) The network complexity of the 0-10 cm fungal community gradually increased with elevation, while that of the 10-20 and 20-30 cm fungal communities exhibited a decreasing trend. Compared to the 0-10 cm soil layer, more changes in the relative abundance of fungal biomarkers occurred in the 10-20 and 20-30 cm soil layers, indicating that the fungal communities at these depths are more sensitive to climate changes. Among the key factors driving these alterations, soil temperature and moisture soil water content stood out as pivotal in shaping the assembly mechanisms and network complexity of fungal communities. This study contributes to the understanding of soil fungal community patterns and drivers along elevational gradients in alpine ecosystems and provides important scientific evidence for predicting the functional responses of soil microbial ecosystems in alpine forests.
Collapse
Affiliation(s)
- Bo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Sijie Zhu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jiangrong Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Fangwei Fu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Liangna Guo
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Jieting Li
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yibo Zhang
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Yuzhuo Liu
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Ganggang Chen
- Research Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
| | - Gengxin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wang M, Zhao J, Liu Y, Huang S, Zhao C, Jiang Z, Gu Y, Xiao J, Wu Y, Ying R, Zhang J, Tian W. Deciphering soil resistance and virulence gene risks in conventional and organic farming systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133788. [PMID: 38367443 DOI: 10.1016/j.jhazmat.2024.133788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Organic farming is a sustainable agricultural practice emphasizing natural inputs and ecological balance, and has garnered significant attention for its potential health and environmental benefits. However, a comprehensive evaluation of the emergent contaminants, particularly resistance and virulence genes within organic farming system, remains elusive. Here, a total of 36 soil samples from paired conventional and organic vegetable farms were collected from Jiangsu province, China. A systematic metagenomic approach was employed to investigate the prevalence, dispersal capability, pathogenic potential, and drivers of resistance and virulence genes across both organic and conventional systems. Our findings revealed a higher abundance of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) in organic farming system, with ARGs exhibiting a particularly notable increase of 10.76% compared to the conventional one. Pathogens such as Pseudomonas aeruginosa, Escherichia coli, and Mycobacterium tuberculosis were hosts carrying all four gene categories, highlighting their potential health implications. The neutral community model captured 77.1% and 71.9% of the variance in community dynamics within the conventional and organic farming systems, respectively, indicating that stochastic process was the predominant factor shaping gene communities. The relative smaller m value calculated in organic farming system (0.021 vs 0.023) indicated diminished gene exchange with external sources. Moreover, farming practices were observed to influence the resistance and virulence gene landscape by modifying soil properties, managing heavy metal stress, and steering mobile genetic elements (MGEs) dynamics. The study offers insights that can guide agricultural strategies to address potential health and ecological concerns.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Sijie Huang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Caiyi Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Yongjing Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, Jiangsu, China
| | - Jian Xiao
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Rongrong Ying
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| |
Collapse
|
7
|
Bhardwaj L, Kumar D, Singh UP, Joshi CG, Dubey SK. Herbicide application impacted soil microbial community composition and biochemical properties in a flooded rice field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169911. [PMID: 38185156 DOI: 10.1016/j.scitotenv.2024.169911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.
Collapse
Affiliation(s)
- Laliteshwari Bhardwaj
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Udai P Singh
- Department of Agronomy, Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
8
|
Chen C, Jiang X, Deng Y, Wang H, Zhang Z, Zhang C. A comprehensive insight into the abundance and community of anammox bacteria in sediments of Hangzhou Bay, China. MARINE POLLUTION BULLETIN 2024; 198:115915. [PMID: 38091632 DOI: 10.1016/j.marpolbul.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
A total of 13 surface sediments were collected from Hangzhou Bay (HZB) for an investigation into the distribution and influencing factors of anammox bacterial community. The anammox bacterial 16S rRNA and hzo genes ranged between 2.34 × 105 to 9.22 × 105 copies/g and 3.68 × 105 to 1.70 × 106 copies/g, respectively. The results of high throughput sequencing (HTS) revealed that the obtained OTUs were affiliated with five known genera, named Ca. Scalindua, Ca. Jettenia, Ca. Brocadia, Ca. Kuenenia and Ca. Anammoxoglobus. RDA analysis indicated that salinity, pH, and water depth influenced the anammox bacterial community. Furthermore, network analysis identified Ca. Scalindua as a key genus. Neutral community model (NCM) and modified stochasticity ratio (MST) indicated that the deterministic process dominated the anammox bacterial community assembly. Overall, this study offers a more comprehensive understanding of the abundance and community of anammox bacteria in the sediments of HZB.
Collapse
Affiliation(s)
- Chunlei Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Xuexiao Jiang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Yinan Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangzhou Marine Geological Survey, Guangzhou 510075, China.
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316021, China
| | - Zhichao Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, 316021, China
| | - Chunfang Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
9
|
Li H, Tan L, Xu Y, Zheng X. Metagenomics insights into the performance and mechanism of soil infiltration systems on removing antibiotic resistance genes in rural sewage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118981. [PMID: 37742563 DOI: 10.1016/j.jenvman.2023.118981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
The removal of antibiotic resistance genes (ARGs) in sewage is of great concern, but advanced sewage treatment technologies are not suitable for rural areas, so the multi-layer soil infiltration system (MSL) has been developed for rural sewage treatment. However, little is known about the performance and function of MSL in the treatment of ARGs in rural sewage. Here, we optimized the matrix composition and structure of MSL and explored the efficacy and mechanism of MSL systems for ARG removal under different hydraulic conditions. The ARGs removal rate of MSL ranged from 41.51% to 99.67%, in which MSL with the middle hydraulic load, high pollution load, and continuous inflowing conditions showed the best removal performance. In addition, this system can operate stably and resist the temperature fluctuation, which showed an equivalent removal rate of ARGs in warm and cold seasons, amounting to 69.0%. The structural equation model revealed that microorganisms in sewage could significantly affect ARG removal (path coefficient = 0.91), probably owing to their interspecies competition. As for the internal system, the reduction of ARGs was mainly driven by microorganisms in the system matrix (path coefficient = 0.685), especially soil-mixture-block (SMB) microorganisms. The physicochemical factors of the matrix indirectly reduce ARGs by affecting the microorganisms that adhere to the matrices. Note that the pairwise alignment of nucleotide analysis demonstrated that the system matrix, especially biochar in the SMB, adsorbed ARGs and their hosts from the sewage, and in turn eliminated them by inhibiting the spread and colonization of hosts, thereby reducing the abundance of ARGs. Collectively, this study provides a deeper insight into the removal of ARGs from rural sewage by MSL, which can help improve sewage treatment technologies.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, China.
| | - Xiangqun Zheng
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China.
| |
Collapse
|
10
|
Li P, Tedersoo L, Crowther TW, Dumbrell AJ, Dini-Andreote F, Bahram M, Kuang L, Li T, Wu M, Jiang Y, Luan L, Saleem M, de Vries FT, Li Z, Wang B, Jiang J. Fossil-fuel-dependent scenarios could lead to a significant decline of global plant-beneficial bacteria abundance in soils by 2100. NATURE FOOD 2023; 4:996-1006. [PMID: 37904026 DOI: 10.1038/s43016-023-00869-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Exploiting the potential benefits of plant-associated microbes represents a sustainable approach to enhancing crop productivity. Plant-beneficial bacteria (PBB) provide multiple benefits to plants. However, the biogeography and community structure remain largely unknown. Here we constructed a PBB database to couple microbial taxonomy with their plant-beneficial traits and analysed the global atlas of potential PBB from 4,245 soil samples. We show that the diversity of PBB peaks in low-latitude regions, following a strong latitudinal diversity gradient. The distribution of potential PBB was primarily governed by environmental filtering, which was mainly determined by local climate. Our projections showed that fossil-fuel-dependent future scenarios would lead to a significant decline of potential PBB by 2100, especially biocontrol agents (-1.03%) and stress resistance bacteria (-0.61%), which may potentially threaten global food production and (agro)ecosystem services.
Collapse
Affiliation(s)
- Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | | | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, UK
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mohammad Bahram
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Lu Kuang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Ting Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Franciska T de Vries
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing, China.
| |
Collapse
|
11
|
Qiu Z, Li J, Wang P, Wang D, Han L, Gao X, Shu J. Response of soil bacteria on habitat-specialization and abundance gradient to different afforestation types. Sci Rep 2023; 13:18181. [PMID: 37875517 PMCID: PMC10598043 DOI: 10.1038/s41598-023-44468-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Studies involving response of subgroups of soil microorganisms to forest change, especially comparative studies on habitat-specialization and abundance gradient were still lack. In this study, we analyzed the response of soil bacterial diversity and structure to afforestation types and its relationship to environment of Fanggan ecological restoration area under the classification of subgroups by habitat-specialization and abundance gradient based on abundance ratio respectively. The results were: (1) On the habitat-specialization gradient, the variation of OTUs species number and abundance was consistent and positively correlated with habitat-specialization; on the abundance gradient, the variation was opposite and OTUs species number was negatively correlated with abundance gradient; (2) The distribution frequency of each subgroup on both gradients was the highest in broad-leaved forests, but the abundance was the opposite. The distribution frequency of the same stand showed no difference among habitat-specialization subgroups, but the abundant subgroup in broad-leaved forests was the highest among the abundance subgroups; (3) α-diversity was positively correlated with habitat-specialization but negatively with abundance, with the highest mostly in broad-leaved and mixed forests; (4) Community structure among stands on habitat-specialization gradient showed no significant difference, but that of rare subgroup between broad-leaved forests and other stands significantly differed. Plant diversity and vegetation composition correlated stronger with community structure than spatial distance and soil physicochemical properties on both gradients. Our results provided a new perspective for revealing the effects of afforestation types on soil bacteria from the comparison of habitat specialization and abundance gradient.
Collapse
Affiliation(s)
- Zhenlu Qiu
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Jie Li
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Peng Wang
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Dong Wang
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China
| | - Li Han
- College of Biological and Chemical Enginering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xiaojuan Gao
- College of Biological and Chemical Enginering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jing Shu
- College of Forestry Engineering, Shandong Agricultural and Engineering University, Jinan, 250100, China.
| |
Collapse
|
12
|
Li P, Tedersoo L, Crowther TW, Wang B, Shi Y, Kuang L, Li T, Wu M, Liu M, Luan L, Liu J, Li D, Li Y, Wang S, Saleem M, Dumbrell AJ, Li Z, Jiang J. Global diversity and biogeography of potential phytopathogenic fungi in a changing world. Nat Commun 2023; 14:6482. [PMID: 37838711 PMCID: PMC10576792 DOI: 10.1038/s41467-023-42142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.
Collapse
Affiliation(s)
- Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu Kuang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Ting Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Songhan Wang
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, Essex, UK.
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| |
Collapse
|
13
|
Zhang M, Xiong J, Zhou L, Li J, Fan J, Li X, Zhang T, Yin Z, Yin H, Liu X, Meng D. Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132256. [PMID: 37567138 DOI: 10.1016/j.jhazmat.2023.132256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Sulfate-reducing bacteria (SRB) were effective in stabilizing Sb. However, the influence of electron donors and acceptors during SRB remediation, as well as the ecological principles involved, remained unclear. In this study, Desulfovibrio desulfuricans ATCC 7757 was utilized to stabilize soil Sb within microcosm. Humic acid (HA) or sodium sulfate (Na2SO4) were employed to enhance SRB capacity. The SRB+HA treatment exhibited the highest Sb stabilization rate, achieving 58.40%. Bacterial community analysis revealed that SRB altered soil bacterial diversity, community composition, and assembly processes, with homogeneous selection as the predominant assembly processes. When HA and Na2SO4 significantly modified the stimulated microbial community succession trajectories, shaped the taxonomic composition and interactions of the bacterial community, they showed converse effect in shaping bacterial community which were both helpful for promoting dissimilatory sulfate reduction. Na2SO4 facilitated SRB-mediated anaerobic reduction and promoted interactions between SRB and bacteria involved in nitrogen and sulfur cycling. The HA stimulated electron generation and storage, and enhanced the interactions between SRB and bacteria possessing heavy metal tolerance or carbohydrate degradation capabilities.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jing Xiong
- Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Jingjing Li
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian 361000, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian 361000, China
| | - Xing Li
- Hunan HIKEE Environmental Technology CO., LTD, Changsha 410221, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
14
|
Zhou T, Tang S, Cui J, Zhang Y, Li X, Qiao Q, Long XE. Biochar amendment reassembles microbial community in a long-term phosphorus fertilization paddy soil. Appl Microbiol Biotechnol 2023; 107:6013-6028. [PMID: 37535122 DOI: 10.1007/s00253-023-12701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
This study investigates the effect of biochar amendment on microbial community structure and soil nutrient status in paddy soil that has been fertilized for an extended period of time, shedding light on sustainable agricultural practices. A 90-day incubation period revealed that biochar amendment, as opposed to long-term fertilization, significantly influenced the physicochemical properties and microbial composition of the soil. The microcosm experiment conducted using six treatments analyzed soil samples from a long-term rice ecosystem. We employed microbial biomarkers (phospholipid fatty acids, PLFAs; isoprenoid and branched glycerol dialkyl glycerol tetraethers, iGDGTs and brGDGTs; DNA) to assess microbial biomass and community structure. Biochar addition led to a decrease in PLFA biomass (15-32%) and archaeal iGDGT abundance (14-43%), while enhancing bacterial brGDGT abundance by 15-77%. Intact biochar increased archaeal and bacterial diversity, though fungal diversity remained unchanged. However, acid-washed biochar did not result in a uniform microbial diversity response. The abundance of various microbial taxa was changed by biochar amendment, including Crenarchaeota, Proteobacteria, Nitrospira, Basidiomycota, Halobacterota, Chloroflexi, Planctomycetota, and Ascomycota. Soil NH4+-N was found as the primary environmental factor impacting the composition of archaea, bacteria, and fungus in this study. These findings imply that the addition of biochar has a quick influence on the structure and activity of microbial communities, with fungi possibly having a critical role in acid paddy soil. This study contributes valuable knowledge for developing sustainable agricultural practices that promote healthy soil ecosystems. KEY POINTS: • Biochar type and phosphorus fertilization demonstrated an interactive effect on the diversity of archaea, but no such effect was observed for bacteria and fungi. • Soil fungi contribute to approximately 20% of the total phospholipid fatty acid (PLFA) content. • Biochar, especially acid-washed rice straw biochar, increases glucose metabolism in bacteria and archaea and decreases saprophytic fungi.
Collapse
Affiliation(s)
- Tongtong Zhou
- School of Geographic Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Sijia Tang
- Suzhou Industrial Park Xingyang School, Suzhou, 215000, Jiangsu, China
| | - Jie Cui
- School of Geographic Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Yukai Zhang
- School of Geographic Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xin Li
- School of Geographic Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Qicheng Qiao
- School of Environment and Biological Engineering, Nantong College of Science and Technology, Nantong City, Jiangsu, 226007, People's Republic of China
- Jiangsu Province Engineering Research Center of Agricultural and Rural Pollution Prevention Technology and Equipment, Nantong City, Jiangsu, 226007, People's Republic of China
| | - Xi-En Long
- School of Geographic Sciences, Nantong University, Nantong, 226019, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Agricultural and Rural Pollution Prevention Technology and Equipment, Nantong City, Jiangsu, 226007, People's Republic of China.
| |
Collapse
|
15
|
Tian W, Wang H, Xiang X, Loni PC, Qiu X, Wang R, Huang X, Tuovinen OH. Water table level controls methanogenic and methanotrophic communities and methane emissions in a Sphagnum-dominated peatland. Microbiol Spectr 2023; 11:e0199223. [PMID: 37747896 PMCID: PMC10580971 DOI: 10.1128/spectrum.01992-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/27/2023] [Indexed: 09/27/2023] Open
Abstract
Peatlands are important sources of the greenhouse gas methane emissions equipoised by methanogens and methanotrophs. However, knowledge about how microbial functional groups associated with methane production and oxidation respond to water table fluctuations has been limited to date. Here, methane-related microbial communities and the potentials of methane production and oxidation were determined along sectioned peat layers in a subalpine peatland across four Sphagnum-dominated sites with different water table levels. Methane fluxes were also monitored at these sites. The results showed that mcrA gene copies for methanogens were the highest in the 10- to 15-cm peat layer, which was also characterized by the maximum potential methane production (24.53 ± 1.83 nmol/g/h). Copy numbers of the pmoA gene for type Ia and Ib methanotrophs were enriched in the 0-5 cm peat layer with the highest potential methane oxidation (43.09 ± 3.44 nmol/g/h). For the type II methanotrophs, the pmoA gene copies were higher in the 10- to 15-cm peat layer. Hydrogenotrophic methanogens and type II methanotrophs dominated the methane functional groups. Deterministic process contributed more to methanogenic and methanotrophic community assemblages in comparison with stochastic process. The level of water table significantly shaped methanogenic and methanotrophic community structures and regulated methane fluxes. Compared with vascular plants, Sphagnum mosses significantly reduced the methane emissions in peatlands. Collectively, these findings enhance a comprehensive understanding of the effect of the water table level on methane functional groups, with consequential implications for reducing methane emissions within peatland ecosystems.IMPORTANCEThe water table level is recognized as a critical factor in regulating methane emissions, which are largely dependent on the balance of methanogens and methanotrophs. Previous studies on peat methane emissions have been mostly focused on spatial-temporal variations and the relationship with meteorological conditions. However, the role of the water table level in methane emissions remains unknown. In this work, four representative microhabitats along a water table gradient in a Sphagnum-dominated peatland were sampled to gain an insight into methane functional communities and methane emissions as affected by the water table level. The changes in methane-related microbial community structure and assembly were used to characterize the response to the water table level. This study improves the understanding of the changes in methane-related microbial communities and methane emissions with water table levels in peatlands.
Collapse
Affiliation(s)
- Wen Tian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Resource and Environment, Anhui Science and Technology of University, Chuzhou, China
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Prakash C. Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Xianyu Huang
- Hubei Key Laboratory of Critical Zone Evolution, China University of Geosciences, Wuhan, China
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Liu H, Han H, Zhang R, Xu W, Wang Y, Zhang B, Yin Y, Cao H. Biogeographic Patterns of Fungal Sub-Communities under Different Land-Use Types in Subtropical China. J Fungi (Basel) 2023; 9:646. [PMID: 37367582 DOI: 10.3390/jof9060646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Revealing the regional distribution and diversity of fungal sub-communities under different land management practices is essential to conserve biodiversity and predict microbial change trends. In this study, a total of 19 tilled and 25 untilled soil samples across different land-use types were collected from subtropical China to investigate the differences between the spatial distribution patterns, diversity, and community assembly of fungal sub-communities using high-throughput sequencing technology. Our results found that anthropogenic disturbances significantly reduced the diversity of abundant taxa but significantly increased the diversity of rare taxa, suggesting that the small-scale intensive management of land by individual farmers is beneficial for fungal diversity, especially for the conservation of rare taxa. Abundant, intermediate, and rare fungal sub-communities were significantly different in tilled and untilled soils. Anthropogenic disturbances both enhanced the homogenization of fungal communities and decreased the spatial-distance-decay relationship of fungal sub-communities in tilled soils. Based on the null model approach, the changes in the assembly processes of the fungal sub-communities in tilled soils were found to shift consistently to stochastic processes, possibly as a result of the significant changes in the diversity of those fungal sub-communities and associated ecological niches in different land-use types. Our results provide support for the theoretical contention that fungal sub-communities are changed by different land management practices and open the way to the possibility of predicting those changes.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Heming Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoling Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuwei Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Yin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Stochastic Processes Drive the Assembly and Metabolite Profiles of Keystone Taxa during Chinese Strong-Flavor Baijiu Fermentation. Microbiol Spectr 2023:e0510322. [PMID: 36916915 PMCID: PMC10101002 DOI: 10.1128/spectrum.05103-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Multispecies communities participate in the fermentation of Chinese strong-flavor Baijiu (CSFB), and the metabolic activity of the dominant and keystone taxa is key to the flavor quality of the final product. However, their roles in metabolic function and assembly processes are still not fully understood. Here, we identified the variations in the metabolic profiles of dominant and keystone taxa and characterized their community assembly using 16S rRNA and internal transcribed spacer (ITS) gene amplicon and metatranscriptome sequencing. We demonstrate that CSFB fermentations with distinct metabolic profiles display distinct microbial community compositions and microbial network complexities and stabilities. We then identified the dominant taxa (Limosilactobacillus fermentum, Kazachstania africana, Saccharomyces cerevisiae, and Pichia kudriavzevii) and the keystone ecological cluster (module 0, affiliated mainly with Thermoascus aurantiacus, Weissella confusa, and Aspergillus amstelodami) that cause changes in metabolic profiles. Moreover, we highlight that the alpha diversity of keystone taxa contributes to changes in metabolic profiles, whereas dominant taxa exert their influence on metabolic profiles by virtue of their relative abundance. Additionally, our results based on the normalized stochasticity ratio (NST) index and the neutral model revealed that stochastic and deterministic processes together shaped CSFB microbial community assemblies. Stochasticity and environmental selection structure the keystone and dominant taxa differently. This study provides new insights into understanding the relationships between microbial communities and their metabolic functions. IMPORTANCE From an ecological perspective, keystone taxa in microbial networks with high connectivity have crucial roles in community assembly and function. We used CSFB fermentation as a model system to study the ecological functions of dominant and keystone taxa at the metabolic level. We show that both dominant taxa (e.g., those taxa that have the highest relative abundances) and keystone taxa (e.g., those taxa with the most cooccurrences) affected the resulting flavor profiles. Moreover, our findings established that stochastic processes were dominant in shaping the communities of keystone taxa during CSFB fermentation. This result is striking as it suggests that although the controlled conditions in the fermentor can determine the dominant taxa, the uncontrolled rare keystone taxa in the microbial community can alter the resulting flavor profiles. This important insight is vital for the development of potential manipulation strategies to improve the quality of CSFB through the regulation of keystone species.
Collapse
|
18
|
Kan P, Zhang N, Zeng B, Yao J, Zhi S, Chen H, Yao Z, Yangyao J, Zhang Z. Satellite taxa regulated the response of constructed wetlands microeukaryotic community to changing hydraulic loading rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160742. [PMID: 36528101 DOI: 10.1016/j.scitotenv.2022.160742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Revealing how species interaction and assembly processes structure the core and satellite microeukaryotic subcommunities in an engineering environment is crucial for understanding how biodiversity influences system function. By investigating the core and satellite microeukaryotic subcommunities in constructed wetlands (CWs), we depicted an integrated distribution pattern of microeukaryotic communities in the CWs with different hydraulic loading rates (HLRs). Surprisingly, our results suggested that high HLR reduced the diversity and network stability of the microeukaryote community in CW. The stochastic process becomes more important with the increased HLR. In addition, satellite and core taxa varied inconsistently under different HLRs except for niche breadth. And the changes in all taxa were consistent with those in satellite taxa. Satellite taxa, but not core taxa, was an important driver in shaping the dynamics of microeukaryotic communities and played an important role in maintaining the stability of the microeukaryotic community. Overall, our results not only fill a gap in understanding the microeukaryotic community dynamics and its basic drivers of CWs under different HLRs but also highlights the particular importance of satellite microeukaryotes in mediating biogeochemical cycles in CWs ecosystems.
Collapse
Affiliation(s)
- Peiying Kan
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Nan Zhang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Bianhao Zeng
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Jiafeng Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Huaihai Chen
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Biocontrol, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China; Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China.
| | - Jiannan Yangyao
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheyun Zhang
- Institute of Ocean Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
19
|
Xing W, Gai X, Ju F, Chen G. Microbial communities in tree root-compartment niches under Cd and Zn pollution: Structure, assembly process and co-occurrence relationship. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160273. [PMID: 36460109 DOI: 10.1016/j.scitotenv.2022.160273] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Woody plants have showed great potential in remediating severely contaminated soils by heavy metals (HMs) due to their cost-efficient and ecologically friendly trait. It is believed the root-associated microbiota plays a vital role in phytoremediation for HMs. However, the ecological process controlling the assembly and composition of tree root-associated microbial communities under HMs stress remains poorly understood. Herein, we profiled the bulk soil, rhizosphere and endosphere microbial communities of trees growing in heavily Cd and Zn polluted soil. The microbiota was gradually filtered from bulk soil to the tree roots and was selectively enriched in roots with specific taxa, such as Proteobacteria and Ascomycota. The microbial community assembly along the soil-root continuum was mainly controlled by deterministic processes from bulk soil to the endosphere, with the normalized stochasticity ratio (NST) indices of 67.16-31.05 % and 30.37-15.02 % for bacteria and fungi, respectively. Plant selection pressure sequentially increased from bulk soil to rhizosphere to endosphere, with the reduced bacterial alpha diversity accompanying the consequently reduced complexity of the co-occurrence network. Together, the findings provide new evidence for horizontal transmission of endophytic microbiome from soil to the host, which can shed light on the future screening and application of microbial-assisted phytoremediation.
Collapse
Affiliation(s)
- Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, PR China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China.
| |
Collapse
|
20
|
Yan K, You Q, Wang S, Zou Y, Chen J, Xu J, Wang H. Depth-dependent patterns of soil microbial community in the E-waste dismantling area. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130379. [PMID: 36427484 DOI: 10.1016/j.jhazmat.2022.130379] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The long-term dismantling of electronic waste (E-waste) has contaminated the soil environment considerably. In spite of this, it is unknown if it affects the depth-resolved microbial communities. In the present research, six soil profiles (dismantling sites and the surrounding farmland) were collected from one of the largest Chinese E-waste disposal centers to identify depth-resolved microbiota and assess how heavy metal contamination affects microbial adaptation. Results suggested that cadmium (0.12-7.22 mg kg-1) and copper (18.99-11282.03 mg kg-1) were the main pollutants in the test soil profiles, and their concentrations gradually decreased with depth. The surrounding contaminated farmland has a more complex interaction and higher modularity (0.77-0.85) among microbes, indicating a stronger niche differentiation to enhance functional diversity. The proportion of positive interactions between taxa decreased with depth, as high heavy metals contamination in the topsoil results in the co-occurrence of microorganisms with the same ecological niche that collaborated to face environmental stress. Soil physicochemical properties, heavy metals concentration, and soil depth critically affect microbial communities. Microbial community assembly processes in the topsoil were affected by environmental filtering, i.e., by deterministic processes (NST: 13-52%), while were more stochastic (NST: 46-72%) in the subsoil due to the environment of soil becoming more homogeneous as soil depth increased.
Collapse
Affiliation(s)
- Kang Yan
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi You
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Suyuan Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiyang Zou
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Chen
- Plant Protection, Fertilizer and Rural Energy Agency of Wenling, Wenling 317500, Zhejiang Province, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haizhen Wang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Qin D, Li Y, Chen N, Hu A, Yu CP. Response and recovery mechanisms of river microorganisms to gradient concentrations of estrogen. Front Microbiol 2023; 14:1109311. [PMID: 36846800 PMCID: PMC9944024 DOI: 10.3389/fmicb.2023.1109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
As an important ecological system on the earth, rivers have been influenced by the rapid development of urbanization, industrialization, and anthropogenic activities. Increasingly more emerging contaminants, such as estrogens, are discharged into the river environment. In this study, we conducted river water microcosmic experiments using in situ water to investigate the response mechanisms of microbial community when exposed to different concentrations of target estrogen (estrone, E1). Results showed that both exposure time and concentrations shaped the diversity of microbial community when exposed to E1. Deterministic process played a vital role in influencing microbial community over the entire sampling period. The influence of E1 on microbial community could last for a longer time even after the E1 has been degraded. The microbial community structure could not be restored to the undisturbed state by E1, even if disturbed by low concentrations of E1(1 μg/L and 10 μg/L) for a short time. Our study suggests that estrogens could cause long-term disturbance to the microbial community of river water ecosystem and provides a theoretical basis for assessing the environmental risk of estrogens in rivers.
Collapse
Affiliation(s)
- Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yan Li
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, China
| | - Nengwang Chen
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
22
|
Wang M, Wang C, Yu Z, Wang H, Wu C, Masoudi A, Liu J. Fungal diversities and community assembly processes show different biogeographical patterns in forest and grassland soil ecosystems. Front Microbiol 2023; 14:1036905. [PMID: 36819045 PMCID: PMC9928764 DOI: 10.3389/fmicb.2023.1036905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Soil fungal community has been largely explored by comparing their natural diversity. However, there is a relatively small body of literature concerned with fungal community assembly processes and their co-occurrence network correlations carried out across large spatial-temporal scales with complex environmental gradients in natural ecosystems and different habitats in China. Thus, soil fungal community assembly processes were assessed to predict changes in soil function in 98 different forest and grassland sites from the Sichuan, Hubei, and Hebei Provinces of China using high-throughput sequencing of nuclear ribosomal internal transcribed spacer 2 (ITS-2). The 10 most abundant fungal phyla results showed that Ascomycota was the most abundant phylum in forests from Sichuan province (64.42%) and grassland habitats from Hebei province (53.46%). Moreover, core fungal taxa (487 OTUs) represented 0.35% of total fungal OTUs. We observed higher fungal Shannon diversity and richness (the Chao1 index) from diverse mixed forests of the Sichuan and Hubei Provinces than the mono-cultured forest and grassland habitats in Hebei Province. Although fungal alpha and beta diversities exhibited different biogeographical patterns, the fungal assembly pattern was mostly driven by dispersal limitation than selection in different habitats. Fungal co-occurrence analyses showed that the network was more intense at Saihanba National Forest Park (SNFP, Hebei). In contrast, the co-occurrence network was more complex at boundaries between forests and grasslands at SNFP. Additionally, the highest number of positive (co-presence or co-operative) correlations of fungal genera were inferred from grassland habitat, which led fungal communities to form commensalism relationships compared to forest areas with having higher negative correlations (mutual exclusion or competitive). The generalized additive model (GAM) analysis showed that the association of fungal Shannon diversity and richness indices with geographical coordinates did not follow a general pattern; instead, the fluctuation of these indices was restricted to local geographical coordinates at each sampling location. These results indicated the existence of a site effect on the diversity of fungal communities across our sampling sites. Our observation suggested that higher fungal diversity and richness of fungal taxa in a particular habitat are not necessarily associated with more complex networks.
Collapse
|
23
|
Zhang M, Zhang R, Song R, An X, Chu G, Jia H. Soil pqqC-harboring bacterial community response to increasing aridity in semi-arid grassland ecosystems: Diversity, co-occurrence network, and assembly process. Front Microbiol 2022; 13:1019023. [PMID: 36338099 PMCID: PMC9633997 DOI: 10.3389/fmicb.2022.1019023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2023] Open
Abstract
Aridity is increasing in several regions because of global climate change, which strongly affects the soil microbial community. The soil pqqC-harboring bacterial community plays a vital role in soil P cycling and P availability. However, the effect of shifts in aridity on the pqqC community is largely unknown. Here, based on high-throughput sequencing technology, we investigated the response patterns of the diversity, co-occurrence networks, and assembly mechanisms of the soil pqqC communities along a natural aridity gradient in adjacent pairs of natural and disturbed grasslands in Inner Mongolia, China. The results showed that the α-diversity of the pqqC community first increased and then decreased with increasing aridity in the natural grassland, while it linearly increased as aridity increased in the disturbed grassland. The pqqC community dissimilarity significantly increased with increased aridity, exhibiting a steeper change rate in the disturbed grassland than in the natural grassland. Increased aridity altered the pqqC community composition, leading to increases in the relative abundance of Actinobacteria but decreases in Proteobacteria. The composition and structure of the pqqC community showed significant differences between natural and disturbed grasslands. In addition, the network analysis revealed that aridity improved the interactions among pqqC taxa and promoted the interspecific competition of pqqC microorganisms. The pqqC community assembly was primarily governed by stochastic processes, and the relative contribution of stochastic processes increased with increasing aridity. Furthermore, disturbances could affect pqqC-harboring bacterial interactions and assembly processes. Overall, our findings fill an important knowledge gap in our understanding of the influence of aridity on the diversity and assembly mechanism of the soil pqqC community in grassland ecosystems, and this work is thus conducive to predicting the pqqC community and its ecological services in response to future climate change.
Collapse
Affiliation(s)
- Mei Zhang
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Ruixi Zhang
- Inner Mongolia Autonomous Region Water Conservancy and Hydropower Survey and Design Institute Co., Ltd., Hohhot, China
| | - Riquan Song
- Inner Mongolia Institute of Water Conservancy Science Research, Hohhot, China
| | - Xilong An
- Xilin Gol League Bureau of Agriculture and Animal Husbandry, Xilinhot, China
| | - Guixin Chu
- School of Life Science, Shaoxing University, Shaoxing, China
| | - Hongtao Jia
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, Urumqi, China
| |
Collapse
|
24
|
Chen Z, Zhang T, Meng J, Zhou S, Zhang Z, Chen Z, Liu Y, Zhang J, Cui J. Efficient nitrate removal of immobilized mixed aerobic denitrifying bacteria and community dynamics response to temperature and low carbon/nitrogen polluted water. BIORESOURCE TECHNOLOGY 2022; 362:127873. [PMID: 36049711 DOI: 10.1016/j.biortech.2022.127873] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The denitrification performance of immobilized mixed aerobic denitrifying bacteria (IMADB) was investigated. IMADB displayed strong temperature adaptability under low Carbon/Nitrogen conditions. At 5, 15, and 25 °C, the nitrate removal efficiencies of volcanic rock and polyester fiber sponge immobilized system reached 83.95%-98.25% and 89.71%-98.14%, respectively. The nitrate content removed by the carrier accounted for 41.18%-82.47% of the nitrate content removed by the immobilized system at different temperature, and played a major role in nitrate removal. The lower the temperature, the greater the role of the carrier. At the same temperature, carrier had a relatively higher richness, diversity, and evenness. Network analysis revealed that carrier species, which were positively correlated with nitrate removal efficiency, had the largest OTUs and abundance. Meanwhile, carrier had the widest niche. The total nitrogen removal efficiency of IMADB reached 56.10%-62.31% in the natural water system, highlighting a promising application prospect.
Collapse
Affiliation(s)
- Zhaoying Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Tianna Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiajing Meng
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China.
| | - Ziwei Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Zhe Chen
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Yilin Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiafeng Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| | - Jiansheng Cui
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, PR China
| |
Collapse
|
25
|
Forest Type and Site Conditions Influence the Diversity and Biomass of Edible Macrofungal Species in Ethiopia. J Fungi (Basel) 2022; 8:jof8101023. [PMID: 36294588 PMCID: PMC9605516 DOI: 10.3390/jof8101023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Ethiopian forests are rich in valuable types of non-wood forest products, including mushrooms. However, despite their nutritional, economic, and ecological importance, wild edible mushrooms have been given little attention and are rarely documented in Ethiopia. In this study, we assessed mushroom production levels in natural and plantation forests and the influence of climate and environmental variables on mushroom production. Sporocarps were sampled weekly from July to August 2019 at a set of permanent plots (100 m2) in both forest systems. We analyzed 63 plots to quantify sporocarp species’ richness and fresh weight as well as to elucidate the degree of influence of forest types and site conditions, including soil and climate. Morphological analyses were used to identify fungi. In total, we recorded 64 wild edible fungal species belonging to 31 genera and 21 families from the plots established in the natural and plantation forests. A significantly greater total number of edible fungi were collected from natural forests (n = 40 species) than from plantations. Saprotrophs (92.19%) were the dominant guild whereas ectomycorrhizal fungi represented only 6.25% of species. Ecologically and economically important fungal species such as Agaricus campestroides, Tylopilus niger, Suillus luteus, Tricholoma portentosum, and Morchella americana were collected. The sporocarp yield obtained from plantation forests (2097.57 kg ha−1 yr–1) was significantly greater than that obtained from natural forests (731.18 kg ha−1 yr–1). The fungal community composition based on sporocarp production was mainly correlated with the organic matter, available phosphorus, and total nitrogen content of the soil, and with the daily minimum temperature during collection. Accordingly, improving edible species’ richness and sporocarp production by maintaining ecosystem integrity represents a way of adding economic value to forests and maintaining biological diversity, while providing wood and non-wood forest products; we propose that this approach is imperative for managing Ethiopian forests.
Collapse
|
26
|
Li B, Shen C, Wu HY, Zhang LM, Wang J, Liu S, Jing Z, Ge Y. Environmental selection dominates over dispersal limitation in shaping bacterial biogeographical patterns across different soil horizons of the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156177. [PMID: 35613642 DOI: 10.1016/j.scitotenv.2022.156177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial biogeographical patterns have been widely explored from horizontal to vertical scales. However, studies of microbial vertical distributions were still limited (e.g., how soil genetic horizons influence microbial distributions). To shed light on this question, we investigated soil bacterial communities across three soil horizons (topsoil: horizon A; midsoil: horizon B; subsoil: horizon C) of 60 soil profiles along a 3500 km transect in the Qinghai-Tibet Plateau. We found that bacterial diversity was highest in the topsoil and lowest in the subsoil, and community composition significantly differed across soil horizons. The network complexity decreased from topsoil to subsoil. There were significant geographical/environmental distance-decay relationships (DDR) in three soil horizons, with a lower slope from topsoil to subsoil due to the decreased environmental heterogeneity. Variation partitioning analysis (VPA) showed that bacterial community variations were explained more by environmental than spatial factors. Although environmental selection processes played a dominant role, null model analysis revealed that deterministic processes (mainly variable selection) decreased with deeper soil horizons, while stochastic processes (mainly dispersal limitation) increased from topsoil to subsoil. These results suggested that microbial biogeographical patterns and community assembly processes were soil horizon dependent. Our study provides new insights into the microbial vertical distributions in large-scale alpine regions and highlights the vital role of soil genetic horizons in affecting microbial community assembly, which has implications for understanding the pedogenetic process and microbial responses to extreme environment under climate change.
Collapse
Affiliation(s)
- Bojian Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Yong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongwang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Tian J, Huang X, Chen H, Kang X, Wang Y. Homogeneous selection is stronger for fungi in deeper peat than in shallow peat in the low-temperature fens of China. ENVIRONMENTAL RESEARCH 2022; 212:113312. [PMID: 35513061 DOI: 10.1016/j.envres.2022.113312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Peatlands have accumulated enormous amounts of carbon over millennia, and climate changes threatens the release of this carbon into the atmosphere. Fungi are crucial drivers of global carbon cycling because they are the principal decomposer of organic matter in peatlands. However, the fungal community composition and ecological preferences in peat remain unclear, which restricts our ability to evaluate the role of the fungal community in peat biogeochemical functions. We investigated 54 soils from 6 low-temperature peatlands across China to fill this knowledge gap. The peat was divided into above-water table (AWT) and below-water table (BWT) layers based on the water table fluctuation. We investigated fungal community assembly processes and drivers for each peat layer. The results showed that fungal communities differed significantly among peat layers. The relative abundance of symbiotrophs was significantly higher in the AWT (17.4%) than in the BWT (9.0%), while the abundances of yeast and litter saprotrophs were obviously lower in the AWT than in the BWT. Our results revealed that the assemblage of both fungal taxonomic and phylogenetic communities was mainly governed by stochastic processes in both AWT (87.8%) and BWT (58.6%) layers. However, in the BWT, the relative importance of deterministic processes (28.4%) significantly increased, indicating a potential deterministic environmental selection induced by permanently anaerobic condition. Mean annual precipitation and mean annual temperature were the most critical drives for the assemblage of the fungal community in the BWT. These observations collectively indicate that fungal community assembly is depth-dependent, implying different community assembly mechanisms and ecological functions along the peat profile. These findings highlight the importance of climate driven deep peat fungal community composition assemblages and suggest the potential to project the changes in fungal diversity with ongoing climate change.
Collapse
Affiliation(s)
- Jianqing Tian
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xinya Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Xiaoming Kang
- Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanfen Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Generalists and Specialists Determine the Trend and Rate of Soil Fungal Distance Decay of Similarity in a 20-ha Subtropical Forest. FORESTS 2022. [DOI: 10.3390/f13081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fungi are an important component of microbial communities that serve a variety of important roles in nutrient cycling and are essential for plant nutrient uptake in forest soils. Distance decay of similarity (DDS) is one of the few ubiquitous phenomena in community ecology. However, the contribution of specialist and generalist fungal species in shaping DDS remains poorly investigated. Through removing operational taxonomic units (OTU) with low or high frequencies, we rigorously quantified the impact of specialists or generalists on the change in slope, initial similarity, and halving distance of DDS of undefined saprotroph, plant mutualist, and plant putative pathogen communities in a 20-ha subtropical evergreen forest plot in Yunnan Province, Southwest China. We hypothesized that (1) the soil fungal co-occurrence networks are different between the three fungal guilds; (2) specialists and generalists contribute to the spatial turnover and nestedness of beta diversity, respectively; and (3) the removal of specialists or generalists will have opposite effects on the change of slope, initial similarity, and halving distance of DDS. Co-occurrence network analysis showed that the undefined saprotroph network had a much more complicated structure than mutualist and pathogen networks. Ascomycota and Basidiomycota were the two most abundant phyla in soil fungal communities. We found that partly in line with our expectations, the change in initial similarity increased and decreased when removing specialists and generalists, respectively, but there was always one exception guild of out of the three communities for the change in slope and halving distance. We identified that such change was mainly due to the change in turnover and nestedness of beta diversity. Furthermore, the results show that species turnover rather than species nestedness drove fungal beta diversity across functional guilds for both specialists and generalists.
Collapse
|
29
|
Chen S, Wang L, Gao J, Zhao Y, Wang Y, Qi J, Peng Z, Chen B, Pan H, Wang Z, Gao H, Jiao S, Wei G. Agricultural Management Drive Bacterial Community Assembly in Different Compartments of Soybean Soil-Plant Continuum. Front Microbiol 2022; 13:868307. [PMID: 35602087 PMCID: PMC9114711 DOI: 10.3389/fmicb.2022.868307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Flowering stage of soybean is an important agronomic trait, which is important for soybean yield, quality and adaptability, and is the external expression of integrating external environmental factors and endogenous signals of the plant itself. Cropping system can change soil properties and fertility, which in turn determine plant growth and yield. The microbial community is the key regulator of plant health and production performance. Currently, there is limited understanding of the effects of cropping systems on microbial community composition, ecological processes controlling community assembly in different soil-plant continuum compartments of soybean. Here, we hope to clarify the structure and assembly process of different soybean compartments bacterial community at flowering stage through our work. The results showed that intercropping decreased the species diversity of rhizosphere and phyllosphere, and phylloaphere microbes mainly came from rhizosphere. FAPROTAX function prediction showed that indicator species sensitive to intercropping and crop rotation were involved in nitrogen/phosphorus cycle and degradation process, respectively. In addition, compared to the continuous cropping, intercropping increased the stochastic assembly processes of bacterial communities in plant-associated compartments, while crop rotation increased the complexity and stability of the rhizosphere network and the deterministic assembly process. Our study highlights the importance of intercropping and crop rotation, as well as rhizosphere and phyllosphere compartments for future crop management and sustainable agricultural regulation of crop microbial communities.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lulu Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, China
| | - Jiamin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yiwen Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiejun Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Beibei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhifeng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hang Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Alem D, Dejene T, Geml J, Oria-de-Rueda JA, Martín-Pinto P. Metabarcoding analysis of the soil fungal community to aid the conservation of underexplored church forests in Ethiopia. Sci Rep 2022; 12:4817. [PMID: 35314738 PMCID: PMC8938458 DOI: 10.1038/s41598-022-08828-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Most of the Dry Afromontane forests in the northern part of Ethiopia are located around church territories and, hence, are called church forests. These forests are biodiversity islands and provide key ecosystem services to local communities. A previous study of church forest fungal species was based on sporocarp collections. However, to obtain a complete picture of the fungal community, the total fungal community present in the soil needs to be analyzed. This information is important to integrate church forests into global biodiversity conservation strategies and to understand what actions are required to conserve church forests and their biological components, including fungi, which are known for their exceptionally high diversity levels. We assessed soil fungal communities in three church forests using ITS2 rDNA metabarcoding. In total, 5152 fungal operational taxonomic units representing 16 fungal phyla were identified. Saprotrophs followed by ectomycorrhizal fungi and animal pathogens dominated fungal communities. Significant differences in diversity and richness were observed between forests. Non-metric multidimensional scaling confirmed that fungal community composition differed in each forest. The composition was influenced by climatic, edaphic, vegetation, and spatial variables. Linear relationships were found between tree basal area and the abundance of total fungi and trophic groups. Forest management strategies that consider cover, tree density, enrichment plantations of indigenous host tree species, and environmental factors would offer suitable habitats for fungal diversity, production, and function in these forest systems. The application of the baseline information obtained in this study could assist other countries with similar forest conservation issues due to deforestation and forest fragmentation.
Collapse
Affiliation(s)
- Demelash Alem
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain.,Ethiopian Environment and Forest Research Institute (EEFRI), P. O. Box 30708, 1000, Addis Ababa, Ethiopia
| | - Tatek Dejene
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain.,Ethiopian Environment and Forest Research Institute (EEFRI), P. O. Box 30708, 1000, Addis Ababa, Ethiopia
| | - József Geml
- MTA-EKE Lendület Environmental Microbiome Research Group, Eszterházy Károly University, Leányka u. 6, 3300, Eger, Hungary
| | - Juan Andrés Oria-de-Rueda
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain
| | - Pablo Martín-Pinto
- Sustainable Forest Management Research Institute, University of Valladolid, Avda. Madrid 44, 34071, Palencia, Spain.
| |
Collapse
|
31
|
Kang D, Zou S, Ma L, Yin C, Zhu D. Abiotic Regulation: Landslide Scale and Altitude Regulate Functional Traits of Regenerating Plant Communities After Earthquakes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.846642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regeneration and assembly of a plant community after a large-scale natural disturbance are affected by many factors. The relative importance of abiotic factors represented by the external environment and the biological factors inside the plant community during this process is still unexplored. This work investigated the regions affected by the Wenchuan earthquake, focusing on areas with the highest intensity (XI degrees) of this earthquake, and the process of community assembly through functional traits on landslides. The aim of this study was to understand the importance of factors influencing community assembly from the perspective of functional traits. The main conclusion is presented as follows: after the regeneration of large earthquake-induced landslides, community-level functional traits covering many plant organs, such as roots, stems, leaves and seeds, are obviously different from those unaffected by landslides. Functional traits do not show strong phylogenetic conservatism. Overall, community traits are divergent or random, and the degree of divergence among the different traits varies. Species composition and alpha diversity have minimal effect on community functional traits during the process of landslide restoration. Landslide scale and altitude significantly affected community-level functional traits in the process of community assembly. All the findings suggested that the functional traits of regenerating vegetation after the earthquake changed significantly and that the functional traits depended more on abiotic regulation than on evolutionary and species-specific factors.
Collapse
|
32
|
Variations of Bacterial and Diazotrophic Community Assemblies throughout the Soil Profile in Distinct Paddy Soil Types and Their Contributions to Soil Functionality. mSystems 2022; 7:e0104721. [PMID: 35229646 PMCID: PMC8941939 DOI: 10.1128/msystems.01047-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil microbiota plays fundamental roles in maintaining ecosystem functions and services, including biogeochemical processes and plant productivity. Despite the ubiquity of soil microorganisms from the topsoil to deeper layers, their vertical distribution and contribution to element cycling in subsoils remain poorly understood. Here, nine soil profiles (0 to 135 cm) were collected at the local scale (within 300 km) from two canonical paddy soil types (Fe-accumuli and Hapli stagnic anthrosols), representing redoximorphic and oxidative soil types, respectively. Variations with depth in edaphic characteristics and soil bacterial and diazotrophic community assemblies and their associations with element cycling were explored. The results revealed that nitrogen and iron status were the most distinguishing edaphic characteristics of the two soil types throughout the soil profile. The acidic Fe-accumuli stagnic anthrosols were characterized by lower concentrations of free iron oxides and total iron in topsoil and ammonia in deeper layers compared with the Hapli stagnic anthrosols. The bacterial and diazotrophic community assemblies were mainly shaped by soil depth, followed by soil type. Random forest analysis revealed that nitrogen and iron cycling were strongly correlated in Fe-accumuli stagnic anthrosol, whereas in Hapli soil, available sulfur was the most important variable predicting both nitrogen and iron cycling. The distinctive biogeochemical processes could be explained by the differences in enrichment of microbial taxa between the two soil types. The main discriminant clades were the iron-oxidizing denitrifier Rhodanobacter, Actinobacteria, and diazotrophic taxa (iron-reducing Geobacter, Nitrospirillum, and Burkholderia) in Fe-accumuli stagnic anthrosol and the sulfur-reducing diazotroph Desulfobacca in Hapli stagnic anthrosol. IMPORTANCE Rice paddy ecosystems support nearly half of the global population and harbor remarkably diverse microbiomes and functions in a variety of soil types. Diazotrophs provide significant bioavailable nitrogen in paddy soil, priming nitrogen transformation and other biogeochemical processes. This study provides a novel perspective on the vertical distribution of bacterial and diazotrophic communities in two hydragric anthrosols. Microbiome analysis revealed divergent biogeochemical processes in the two paddy soil types, with a dominance of nitrogen-iron cycling processes in Fe-accumuli stagnic anthrosol and sulfur-nitrogen-iron coupling in Hapli stagnic anthrosol. This study advances our understanding of the multiple significant roles played by soil microorganisms, especially diazotrophs, in biogeochemical element cycles, which have important ecological and biogeochemical ramifications.
Collapse
|
33
|
Naylor D, McClure R, Jansson J. Trends in Microbial Community Composition and Function by Soil Depth. Microorganisms 2022; 10:microorganisms10030540. [PMID: 35336115 PMCID: PMC8954175 DOI: 10.3390/microorganisms10030540] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Microbial communities play important roles in soil health, contributing to processes such as the turnover of organic matter and nutrient cycling. As soil edaphic properties such as chemical composition and physical structure change from surface layers to deeper ones, the soil microbiome similarly exhibits substantial variability with depth, with respect to both community composition and functional profiles. However, soil microbiome studies often neglect deeper soils, instead focusing on the top layer of soil. Here, we provide a synthesis on how the soil and its resident microbiome change with depth. We touch upon soil physicochemical properties, microbial diversity, composition, and functional profiles, with a special emphasis on carbon cycling. In doing so, we seek to highlight the importance of incorporating analyses of deeper soils in soil studies.
Collapse
|
34
|
Yu Q, Yang J, Su W, Li T, Feng T, Li H. Heavy metals and microbiome are negligible drivers than mobile genetic elements in determining particle-attached and free-living resistomes in the Yellow River. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127564. [PMID: 34736202 DOI: 10.1016/j.jhazmat.2021.127564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Suspended particles in water can shelter both microorganisms and contaminants. However, the emerging pollutants antibiotic resistance genes (ARGs) in free-living (FL) or particle-attached (PA) bacteria in aquatic environments are less explored. In this study, we compared the free-living and particle-attached ARGs during four seasons in the Yellow River using high-throughput quantitative PCR techniques and 16S rRNA gene sequencing. Our results demonstrated that both the free-living water and particles were dominated by tetracycline and beta-lactamase resistance genes. The PA-ARGs had a higher absolute abundance than FL-ARGs in the Yellow River, regardless of the season. Both PA-ARGs and FL-ARGs had the highest absolute abundance and diversity during winter. Mobile genetic elements (MGEs) were the dominant driver for both size-fractionated ARGs. However, the microbiome had less influence on PA-ARG profiles than the FL-ARG profiles, while the effects of the heavy metals on ARGs were negligible. The community assembly of both FL-ARG and PA-ARG can be explained by neutral processes. Several opportunistic pathogens (e.g., Escherichia coli) associated with human health exhibited a higher relative abundance in the particles than during a free-living lifestyle. Parts of these pathogens were potential ARG hosts. As such, it is important to monitor the ARGs and opportunistic pathogens from size-fractionated bacteria and develop targeted strategies to manage ARG dissemination and opportunistic pathogens to ensure public health.
Collapse
Affiliation(s)
- Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tianshu Feng
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
35
|
Linking microbial body size to community co-occurrences and stability at multiple geographical scales in agricultural soils. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Tang X, Zhang L, Fan C, Wang L, Fu H, Ren S, Shen W, Jia S, Wu G, Zhang Y. Dietary Fiber Influences Bacterial Community Assembly Processes in the Gut Microbiota of Durco × Bamei Crossbred Pig. Front Microbiol 2021; 12:688554. [PMID: 34956107 PMCID: PMC8693415 DOI: 10.3389/fmicb.2021.688554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
Several studies have shown that dietary fiber can significantly alter the composition and structure of the gut bacterial community in humans and mammals. However, few researches have been conducted on the dynamics of the bacterial community assembly across different graded levels of dietary fiber in different gut regions. To address this, 24 Durco × Bamei crossbred pigs were randomly assigned to four experimental chows comprising graded levels of dietary fiber. Results showed that the α-and β-diversity of the bacterial community was significantly different between the cecum and the jejunum. Adding fiber to the chow significantly increased the α-diversity of the bacterial community in the jejunum and cecum, while the β-diversity decreased. The complexity of the bacterial network increased with the increase of dietary fiber in jejunal content samples, while it decreased in cecal content samples. Furthermore, we found that stochastic processes governed the bacterial community assembly of low and medium dietary fiber groups of jejunal content samples, while deterministic processes dominated the high fiber group. In addition, deterministic processes dominated all cecal content samples. Taken together, the variation of gut community composition and structure in response to dietary fiber was distinct in different gut regions, and the dynamics of bacterial community assembly across the graded levels of dietary fiber in different gut regions was also distinct. These findings enhanced our knowledge on the bacterial community assembly processes in gut ecosystems of livestock.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Shen
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Guofang Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
37
|
Hussain S, Liu H, Liu S, Yin Y, Yuan Z, Zhao Y, Cao H. Distribution and Assembly Processes of Soil Fungal Communities along an Altitudinal Gradient in Tibetan Plateau. J Fungi (Basel) 2021; 7:jof7121082. [PMID: 34947064 PMCID: PMC8706254 DOI: 10.3390/jof7121082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
In soil ecosystems, fungi exhibit diverse biodiversity and play an essential role in soil biogeochemical cycling. Fungal diversity and assembly processes across soil strata along altitudinal gradients are still unclear. In this study, we investigated the structure and abundance of soil fungal communities among soil strata and elevational gradients on the Tibetan Plateau using Illumina MiSeq sequencing of internal transcribed spacer1 (ITS1). The contribution of neutral and niche ecological processes were quantified using a neutral community model and a null model-based methodology. Our results showed that fungal gene abundance increased along altitudinal gradients, while decreasing across soil strata. Along with altitudinal gradients, fungal α-diversity (richness) decreased from surface to deeper soil layers, while β-diversity showed weak correlations with elevations. The neutral community model showed an excellent fit for neutral processes and the lowest migration rate (R2 = 0.75). The null model showed that stochastic processes dominate in all samples (95.55%), dispersal limitations were dominated at the surface layer and decreased significantly with soil strata, while undominated processes (ecological drift) show a contrary trend. The log-normal model and the null model (βNTI) correlation analysis also neglect the role of niche-based processes. We conclude that stochastic dispersal limitations, together with ecological drifts, drive fungal communities.
Collapse
Affiliation(s)
- Sarfraz Hussain
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Senlin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Yifan Yin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Zhongyuan Yuan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
| | - Yuguo Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (S.H.); (H.L.); (S.L.); (Y.Y.); (Z.Y.)
- Correspondence:
| |
Collapse
|
38
|
Wang Y, Lu G, Yu H, Du X, He Q, Yao S, Zhao L, Huang C, Wen X, Deng Y. Meadow degradation increases spatial turnover rates of the fungal community through both niche selection and dispersal limitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149362. [PMID: 34375268 DOI: 10.1016/j.scitotenv.2021.149362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The alpine meadow ecosystem, as the main ecosystem of the Qinghai-Tibet Plateau, has been heavily degraded over the past several decades due to overgrazing and climate change. Although soil microorganisms play key roles in the stability and succession of grassland ecosystems, their response to grassland degradation has not been investigated at spatial scale. Here, we systematically analyzed the spatial turnover rates of soil prokaryotic and fungal communities in degraded and undegraded meadows through distance-decay relationship (DDR) and species area relationship (SAR), as well as the community assembly mechanisms behind them. Although the composition and structure of both fungal and prokaryotic communities showed significant changes between undegraded and degraded meadows, steeper spatial turnover rates were only observed in fungi (Degraded Alpine Meadow β = 0.0142, Undegraded Alpine Meadow β = 0.0077, P < 0.05). Mantel tests indicated that edaphic variables and vegetation factors showed significant correlations to the β diversity of fungal community only in degraded meadow, suggesting soil and vegetation heterogeneity both contributed to the variation of fungal community in that system. Correspondingly, a novel phylogenetic null model analysis demonstrated that environmental selection was enhanced in the fungal community assembly process during meadow degradation. Interestingly, dispersal limitation was also enhanced for the fungal community in the degraded meadow, and its relative contribution to other assembly process (i.e. selection and drift) showed a significant linear increase with spatial distance, suggesting that dispersal limitation played a greater role as distance increased. Our findings indicated the spatial scaling of the fungal community is altered during meadow degradation by both niche selection and dispersal limitation. This study provides a new perspective for the assessment of soil microbial responses to vegetation changes in alpine areas.
Collapse
Affiliation(s)
- Yingcheng Wang
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China
| | - Guangxin Lu
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Hao Yu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Environmental Science and Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Xiongfeng Du
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shiting Yao
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lirong Zhao
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Caixia Huang
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xiaocheng Wen
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
39
|
Sun X, Pei J, Zhao L, Ahmad B, Huang LF. Fighting climate change: soil bacteria communities and topography play a role in plant colonization of desert areas. Environ Microbiol 2021; 23:6876-6894. [PMID: 34693620 DOI: 10.1111/1462-2920.15799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Global warming has exacerbated desertification in arid regions. Exploring the environmental variables and microbial communities that drive the dynamics of geographic patterns of desert crops is important for large-scale standardization of crops that can control desertification. Here, predictions based on future climate data from CMIP6 show that a steady expand in the suitable production areas for three desert plants (Cistanche deserticola, Cynomorium songaricum and Cistanche salsa) under global warming, demonstrating their high adaptability to future climate change. We examined the biogeography of three desert plant soil bacteria communities and assessed the environmental factors affecting the community assembly process. The α-diversity significantly decreased along elevated latitudes, indicating that the soil bacterial communities of the three species have latitude diversity patterns. The neutral community model evaluated 66.6% of the explained variance of the bacterial community in the soil of desert plants and Modified Stochasticity Ratio <0.5, suggesting that deterministic processes dominate the assembly of bacterial communities in three desert plants. Moreover, topography (longitude, elevation) and precipitation as well as key OTUs (OTU4911: Streptomyces eurythermus and OTU4672: Streptomyces flaveus) drive the colonization of three desert plants. This research offers a promising solution for desert management in arid areas under global warming.
Collapse
Affiliation(s)
- Xiao Sun
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, 611137, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Lei Zhao
- Central Medical District of Chinese PLA General Hospital, Beijing, 100193, China
| | - Bashir Ahmad
- Center for Biotechnology & Microbiology, University of Peshawar, Peshawar, 25000, Pakistan
| | - Lin-Fang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
40
|
Li C, Wang L, Ji S, Chang M, Wang L, Gan Y, Liu J. The ecology of the plastisphere: Microbial composition, function, assembly, and network in the freshwater and seawater ecosystems. WATER RESEARCH 2021; 202:117428. [PMID: 34303166 DOI: 10.1016/j.watres.2021.117428] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3-, NO2-, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem-plastisphere-is unique and exerts different effects in freshwater and seawater ecosystems.
Collapse
Affiliation(s)
- Changchao Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lifei Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shuping Ji
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Mengjie Chang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Longfei Wang
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yandong Gan
- School of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
41
|
Du X, Deng Y, Li S, Escalas A, Feng K, He Q, Wang Z, Wu Y, Wang D, Peng X, Wang S. Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process. Mol Ecol 2020; 30:1072-1085. [PMID: 33320382 DOI: 10.1111/mec.15777] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/04/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022]
Abstract
Although many studies have investigated the spatial scaling of microbial communities living in surface soils, very little is known about the patterns within deeper strata, nor is the mechanism behind them. Here, we systematically assessed spatial scaling of prokaryotic biodiversity within three different strata (Upper: 0-20 cm, Middle: 20-40 cm, and Substratum: 40-100 cm) in a typical grassland by examining both distance-decay (DDRs) and species-area relationships (SARs), taxonomically and phylogenetically, as well as community assembly processes. Each layer exhibited significant biogeographic patterns in both DDR and SAR (p < .05), with taxonomic turnover rates higher than phylogenetic ones. Specifically, the spatial turnover rates, β and z values, respectively, ranged from 0.016 ± 0.005 to 0.023 ± 0.005 and 0.065 ± 0.002 to 0.077 ± 0.004 across soil strata, and both increased with depth. Moreover, the prokaryotic community in grassland soils assembled mainly according to deterministic rather than stochastic mechanisms. By using normalized stochasticity ratio (NST) based on null model, the relative importance of deterministic ratios increased from 48.0 to 63.3% from Upper to Substratum, meanwhile a phylogenetic based method revealed average βNTI also increased with depth, from -5.29 to 19.5. Using variation partitioning and distance approaches, both geographic distance and soil properties were found to strongly affect biodiversity structure, the proportions increasing with depth, but spatial distance was always the main underlying factor. These indicated increasingly deterministic proportions in accelerating turnover rates for spatial assembly of prokaryotic biodiversity. Our study provided new insights on biogeography in different strata, revealing importance of assembly patterns and mechanisms of prokaryote communities in below-surface soils.
Collapse
Affiliation(s)
- Xiongfeng Du
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Institute for Marine Science and Technology, Shandong University, Qingdao, China
| | - Shuzhen Li
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,State Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Arthur Escalas
- MARBEC, Université de Montpellier, CNRS, IRD, IFREMER, Montpellier Cedex 5, France
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhujun Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yueni Wu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Danrui Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xi Peng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
42
|
Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun 2020; 11:6406. [PMID: 33335105 PMCID: PMC7747634 DOI: 10.1038/s41467-020-20271-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022] Open
Abstract
Body size is a key life-history trait that influences community assembly by affecting how ecological processes operate at the organism level. However, the extent to which the relative influences of ecological processes mediate the assembly of differentially sized soil organisms is still unknown. Here, we investigate the community assembly of differentially sized soil microorganisms and microfauna using a continental-scale sampling effort combined with a global-scale meta-analysis. Our results reveal a general relationship between organism body size and the stochastic-deterministic balance operating on community assembly. The smallest microorganisms (bacteria) are relatively more influenced by dispersal-based stochastic processes, while larger ones (fungi, protists and nematodes) are more structured by selection-based deterministic processes. This study elucidates a significant and consistent relationship between an organism life-history trait and how distinct ecological processes operate in mediating their respective community assemblages, thus providing a better understanding of the mechanisms supporting soil biodiversity. It is unclear whether body size affects community assembly mechanisms of soil biota. Here, the authors analyse soil microbial and nematode communities sampled along a 4000-km transect in China and global soil microbiome data to show that bacterial assembly is governed by high dispersal, whereas larger taxa are more influenced by deterministic processes.
Collapse
|
43
|
Abstract
Soil microbial community assembly is crucial for understanding the mechanisms of microbial communities that regulate ecosystem-level functioning. The relative contributions of stochastic and deterministic processes to microbial community assembly remain poorly defined, and major questions exist concerning the soil organic carbon (SOC) dynamics of microbial community assembly in deep soil. Here, the bacterial community assembly processes were explored across five soil profile depths (up to 80 cm) during a 15-year field experiment involving four fertilization regimes. We found that the bacterial community assembly was initially governed by deterministic selection in topsoil but was progressively structured by increasing stochastic dispersal with depth. The migration rate (m) and β-null deviation pattern supported the hypothesis of a relatively greater influence of dispersal in deep soil, which was correlated with bacterial community assembly by stochastic processes. These changes in the entire community assembly reflected consistent assembly processes of the two most dominant phyla, Acidobacteria and Chloroflexi Structural equation modeling showed that soil features (pH and total phosphorus) and bacterial interactions (competition and network complexity) were significantly related to bacterial community assembly in the 0-to-10-cm and 10-to-20-cm layers. Partial Mantel tests, structural equation modeling, and random forest modeling consistently indicated a strong and significant correlation between bacterial community assemblages and SOC dynamics, implying that bacterial assembly processes would potentially suppress SOC metabolism and mineralization when the contributions of stochastic dispersal to communities increased in deeper layers. Our results have important implications for integrating bacterial community assembly processes into the predictions of SOC dynamics.IMPORTANCE We have provided a framework to better understand the mechanisms governing the balance between stochastic and deterministic processes and to integrate the shifts in community assembly processes with microbial carbon metabolism. Our study reinforced that environmental filtering and bacterial cooccurrence patterns influence the stochastic/deterministic continuum of soil bacterial community assembly and that stochasticity may act through deeper soil layers to influence carbon metabolism. Delineating theoretically the potential linkages between community assembly and SOC dynamics across a broad range of microbial systems represents an interesting topic for future research.
Collapse
|