1
|
Lindner BG, Graham KE, Phaneuf JR, Hatt JK, Konstantinidis KT. SourceApp: A Novel Metagenomic Source Tracking Tool that can Distinguish between Fecal Microbiomes Using Genome-To-Source Associations Benchmarked Against Mixed Input Spike-In Mesocosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9507-9516. [PMID: 40326765 PMCID: PMC12101495 DOI: 10.1021/acs.est.5c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Methodologies utilizing metagenomics are attractive to fecal source tracking (FST) aims for assessing the presence and proportions of various fecal inputs simultaneously. Yet, compared to established culture- or PCR-based techniques, metagenomic approaches for these purposes are rarely benchmarked or contextualized for practice. We performed shotgun sequencing experiments (n = 35) of mesocosms constructed from the water of a well-studied recreational and drinking water reservoir spiked with various fecal (n = 6 animal sources, 3 wastewater sources, and 1 septage source) and synthetic microbiome spike-ins (n = 1) introduced at predetermined cell concentrations to simulate fecal pollution events of known composition. We built source-associated genome databases using publicly available reference genomes and metagenome assembled genomes (MAGs) recovered from short- and long-read sequencing of the fecal spike-ins, and then created an associated bioinformatic tool, called SourceApp, for inferring source attribution and apportionment by mapping the metagenomic data to these genome databases. SourceApp's performance varied substantially by source, with cows being underestimated due to under sampling of cow fecal microbiomes. Parameter tuning revealed sensitivity and specificity near 0.90 overall, which exceeded all alternative tools. SourceApp can assist researchers with analyzing and interpreting shotgun sequencing data and developing standard operating procedures on the frontiers of metagenomic FST.
Collapse
Affiliation(s)
- Blake G. Lindner
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
| | - Katherine E. Graham
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
| | - Jacob R. Phaneuf
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
| | - Janet K. Hatt
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
| | - Konstantinos T. Konstantinidis
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta30332, Georgia, United States
| |
Collapse
|
2
|
Lindner BG, Choudhury RA, Pinamang P, Bingham L, D'Amico I, Hatt JK, Konstantinidis KT, Graham KE. Advancing Source Tracking: Systematic Review and Source-Specific Genome Database Curation of Fecally Shed Prokaryotes. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:931-939. [PMID: 39280079 PMCID: PMC11391576 DOI: 10.1021/acs.estlett.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Advancements within fecal source tracking (FST) studies are complicated by a lack of knowledge regarding the genetic content and distribution of fecally shed microbial populations. To address this gap, we performed a systematic literature review and curated a large collection of genomes (n = 26,018) representing fecally shed prokaryotic species across broad and narrow source categories commonly implicated in FST studies of recreational waters (i.e., cats, dogs, cows, seagulls, chickens, pigs, birds, ruminants, human feces, and wastewater). We find that across these sources the total number of prokaryotic genomes recovered from materials meeting our initial inclusion criteria varied substantially across fecal sources: from none in seagulls to 9,085 in pigs. We examined genome sequences recovered from these metagenomic and isolation-based studies extensively via comparative genomic approaches to characterize trends across source categories and produce a finalized genome database for each source category which is available online (n = 12,730). On average, 81% of the genomes representing species-level populations occur only within a single source. Using fecal slurries to test the performance of each source database, we report read capture rates that vary with fecal source alpha diversity and database size. We expect this resource to be useful to FST-related objectives, One Health research, and sanitation efforts globally.
Collapse
Affiliation(s)
- Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rakin A Choudhury
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Princess Pinamang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lilia Bingham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Isabelle D'Amico
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Influence of Nutrients and the Native Community on E. coli Survival in the Beach Environment. Appl Environ Microbiol 2022; 88:e0104322. [PMID: 36218359 PMCID: PMC9642020 DOI: 10.1128/aem.01043-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous research has identified E. coli populations that persist in freshwater beach sand distinct from fecal pollution events. This work identifies factors that influence the survival of E. coli in sand using laboratory microcosms to replicate beach conditions. Microcosms were deployed to examine the effect of genetic background, competition with native microbial community, and increased nutrient concentrations on E. coli survival. Survival was comparable between the phylotypes B1 and B2, however, deficiency of stress response greatly reduced survival. In the absence of the native community under nutrient conditions comparable to those observed in sand, E. coli cell densities remained within an order of magnitude of initial concentrations after 5 weeks of incubation. Increased nitrogen was associated with decreased decay rates in the first 2 weeks, and increased carbon appeared to provide an advantage at later time points. However, the highest survival was found with the addition of both carbon and nitrogen. Native sand seeded with fresh Cladophora maintained higher concentrations of E. coli, compared to sand containing decayed Cladophora or no Cladophora. Our findings demonstrate persistent E. coli populations in sand can be affected by the availability of carbon and nitrogen, the ability to regulate stress, and the presence of algal mats (i.e., Cladophora). Further, this work suggests that the native microbial communities may modulate survival by outcompeting E. coli for nutrients. IMPORTANCE Current monitoring for fecal pollution does not account for persistent E. coli populations in freshwater sand, which can result in higher concentrations in water when no threat to human health is present. This work examined the drivers for persistent E. coli populations in sand to aid beach management techniques. We examined the influence of nutrients, including localized sources such as stranded Cladophora, on E. coli populations. We found the major determinant of E. coli survival in freshwater beach sand was the addition of nutrients, specifically carbon and nitrogen concentrations 10-fold higher than baseline concentrations on beaches. This work provides the framework for identifying pollution sources that can promote E. coli survival in sand through the characterization of carbon and nitrogen content, which can be incorporated into beach management techniques. Through this improved knowledge, we can begin to understand E. coli fluctuations in water due to resuspension from sand into water.
Collapse
|
4
|
Basili M, Techtmann SM, Zaggia L, Luna GM, Quero GM. Partitioning and sources of microbial pollution in the Venice Lagoon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151755. [PMID: 34848267 DOI: 10.1016/j.scitotenv.2021.151755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Microbial pollutants are a serious threat to human and environmental health in coastal areas. Based on the hypothesis that pollution from multiple sources may produce a distinct microbial signature and that microbial pollutants seem to distribute between a free-living and a particle-attached fraction, we investigated the occurrence, partitioning and sources of microbial pollutants in water samples collected in the Venice Lagoon (Italy). The area was taken as a case study of an environment characterized by a long history of industrial pollution and by growing human pressure. We found a variety of pollutants from several sources, with sewage-associated and faecal bacteria accounting for up to 5.98% of microbial communities. Sewage-associated pollutants were most abundant close to the city centre. Faecal pollution was highest in the area of the industrial port and was dominated by human inputs, whereas contamination from animal faeces was mainly detected at the interface with the mainland. Microbial pollutants were almost exclusively associated with the particle-attached fraction. The samples also contained other potential pathogens. Our findings stress the need for monitoring and managing microbial pollution in highly urbanized lagoon and semi-enclosed systems and suggest that management plans to reduce microbial inputs to the waterways should include measures to reduce particulate matter inputs to the lagoon. Finally, High-Throughput Sequencing combined with computational approaches proved critical to assess water quality and appears to be a valuable tool to support the monitoring of waterborne diseases.
Collapse
Affiliation(s)
- Marco Basili
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Luca Zaggia
- CNR IGG, National Research Council - Institute of Geosciences and Earth Resources, Via G. Gradenigo 6, 35131 Padova, Italy
| | - Gian Marco Luna
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125 Ancona, Italy.
| |
Collapse
|
5
|
Lindner BG, Suttner B, Zhu KJ, Conrad RE, Rodriguez-R LM, Hatt JK, Brown J, Konstantinidis KT. Toward shotgun metagenomic approaches for microbial source tracking sewage spills based on laboratory mesocosms. WATER RESEARCH 2022; 210:117993. [PMID: 34979467 DOI: 10.1016/j.watres.2021.117993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Little is known about the genomic diversity of the microbial communities associated with raw municipal wastewater (sewage), including whether microbial populations specific to sewage exist and how such populations could be used to improve source attribution and apportioning in contaminated waters. Herein, we used the influent of three wastewater treatment plants in Atlanta, Georgia (USA) to perturb laboratory freshwater mesocosms, simulating sewage contamination events, and followed these mesocosms with shotgun metagenomics over a 7-day observational period. We describe 15 abundant non-redundant bacterial metagenome-assembled genomes (MAGs) ubiquitous within all sewage inocula yet absent from the unperturbed freshwater control at our analytical limit of detection. Tracking the dynamics of the populations represented by these MAGs revealed varied decay kinetics, depending on (inferred) phenotypes, e.g., anaerobes decayed faster than aerobes under the well-aerated incubation conditions. Notably, a portion of these populations showed decay patterns similar to those of common markers, Enterococcus and HF183. Despite the apparent decay of these populations, the abundance of β-lactamase encoding genes remained high throughout incubation relative to the control. Lastly, we constructed genomic libraries representing several different fecal sources and outline a bioinformatic approach which leverages these libraries for identifying and apportioning contamination signal among multiple probable sources using shotgun metagenomic data.
Collapse
Affiliation(s)
- Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brittany Suttner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kevin J Zhu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Roth E Conrad
- Ocean Science and Engineering, Georgia Institute of Technology, 311 Ferst Drive, ES&T Building, Room 3321, Atlanta, GA 30332, USA
| | - Luis M Rodriguez-R
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Tyrol 6020, Austria
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
6
|
Bacterial community composition and functional potential associated with a variety of urban stormwater sources. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
McClary-Gutierrez JS, Driscoll Z, Nenn C, Newton RJ. Human Fecal Contamination Corresponds to Changes in the Freshwater Bacterial Communities of a Large River Basin. Microbiol Spectr 2021; 9:e0120021. [PMID: 34494860 PMCID: PMC8557911 DOI: 10.1128/spectrum.01200-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial water quality is generally monitored by culturable fecal indicator bacteria (FIB), which are intended to signal human health risk due to fecal pollution. However, FIB have limited utility in most urbanized watersheds as they do not discriminate among fecal pollution sources, tend to make up a small fraction of the total microbial community, and do not inform on pollution impacts on the native ecosystem. To move beyond these limitations, we assessed entire bacterial communities and investigated how bacterial diversity relates to traditional ecological and human health-relevant water quality indicators throughout the Milwaukee River Basin. Samples were collected from 16 sites on 5 days during the summer, including both wet and dry weather events, and were processed by 16S rRNA gene amplicon sequencing. Historical water quality at each sampling location, as opposed to upstream land use, was associated significantly with bacterial community alpha diversity. Source partitioning the sequence data was important for determining water quality relationships. Sewage-associated bacterial sequences were detected in all samples, and the relative abundance of sewage sequences was strongly associated with the human Bacteroides fecal marker. From this relationship, we developed a preliminary threshold for human sewage pollution when using bacterial community sequence data. Certain abundant freshwater bacterial sequences were also associated with human fecal pollution, suggesting their possible utility in water quality monitoring. This study sheds light on how bacterial community analysis can be used to supplement current water quality monitoring techniques to better understand interactions between ecological water quality and human health indicators. IMPORTANCE Surface waters in highly developed mixed-use watersheds are frequently impacted by a wide variety of pollutants, leading to a range of impairments that must be monitored and remediated. With advancing technologies, microbial community sequencing may soon become a feasible method for routine evaluation of the ecological quality and human health risk of a water body. In this study, we partnered with a local citizen science organization to evaluate the utility of microbial community sequencing for identifying pollution sources and ecological impairments in a large mixed-use watershed. We show that changes in microbial community diversity and composition are indicative of both long-term ecological impairments and short-term fecal pollution impacts. By source partitioning the sequence data, we also estimate a threshold target for human sewage pollution, which may be useful as a starting point for future development of sequencing-based water quality monitoring techniques.
Collapse
Affiliation(s)
| | - Zac Driscoll
- Milwaukee Riverkeeper, Milwaukee, Wisconsin, USA
| | - Cheryl Nenn
- Milwaukee Riverkeeper, Milwaukee, Wisconsin, USA
| | - Ryan J. Newton
- School of Freshwater Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Basili M, Campanelli A, Frapiccini E, Luna GM, Quero GM. Occurrence and distribution of microbial pollutants in coastal areas of the Adriatic Sea influenced by river discharge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117672. [PMID: 34380232 DOI: 10.1016/j.envpol.2021.117672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The transport of a variety of pollutants from agricultural, industrial and urbanised areas makes rivers major contributors to the contamination of coastal marine environments. Too little is known of their role in carrying pathogens to the coast. We used DNA-based metabarcoding data to describe the microbial community composition in seawater and sediment collected in front of the estuary of the Tronto, the Chienti and the Esino, three Italian rivers with different pollution levels that empty into the north-central Adriatic Sea, and to detect and measure within these communities the relative abundance of microbial pollutants, including traditional faecal indicators and alternative faecal and sewage-associated pollutants. We then applied the FORENSIC algorithm to distinguish human from non-human sources of microbial pollution and FAPROTAX to map prokaryotic clades to established metabolic or other ecologically relevant functions. Finally, we searched the dataset for other common pathogenic taxa. Seawater and sediment contained numerous potentially pathogenic bacteria, mainly faecal and sewage-associated. The samples collected in front of the Tronto estuary showed the highest level of contamination, likely sewage-associated. The pathogenic signature showed a weak but positive correlation with some nutrients and strong correlations with some polycyclic aromatic hydrocarbons. This study confirms that rivers transport pathogenic bacteria to the coastal sea and highlights the value of expanding the use of HTS data, source tracking and functional identification tools to detect microbial pollutants and identify their sources with a view to gaining a better understanding of the pathways of sewage-associated discharges to the sea.
Collapse
Affiliation(s)
- Marco Basili
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Alessandra Campanelli
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Emanuela Frapiccini
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Gian Marco Luna
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy
| | - Grazia Marina Quero
- Institute of Marine Biological Resources and Biotechnologies, National Research Council (CNR-IRBIM), Ancona, Italy.
| |
Collapse
|
9
|
Zimmer-Faust AG, Steele JA, Xiong X, Staley C, Griffith M, Sadowsky MJ, Diaz M, Griffith JF. A Combined Digital PCR and Next Generation DNA-Sequencing Based Approach for Tracking Nearshore Pollutant Dynamics Along the Southwest United States/Mexico Border. Front Microbiol 2021; 12:674214. [PMID: 34421839 PMCID: PMC8377738 DOI: 10.3389/fmicb.2021.674214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Ocean currents, multiple fecal bacteria input sources, and jurisdictional boundaries can complicate pollution source tracking and associated mitigation and management efforts within the nearshore coastal environment. In this study, multiple microbial source tracking tools were employed to characterize the impact and reach of an ocean wastewater treatment facility discharge in Mexico northward along the coast and across the Southwest United States- Mexico Border. Water samples were evaluated for fecal indicator bacteria (FIB), Enterococcus by culture-based methods, and human-associated genetic marker (HF183) and Enterococcus by droplet digital polymerase chain reaction (ddPCR). In addition, 16S rRNA gene sequence analysis was performed and the SourceTracker algorithm was used to characterize the bacterial community of the wastewater treatment plume and its contribution to beach waters. Sampling dates were chosen based on ocean conditions associated with northern currents. Evidence of a gradient in human fecal pollution that extended north from the wastewater discharge across the United States/Mexico border from the point source was observed using human-associated genetic markers and microbial community analysis. The spatial extent of fecal contamination observed was largely dependent on swell and ocean conditions. These findings demonstrate the utility of a combination of molecular tools for understanding and tracking specific pollutant sources in dynamic coastal water environments.
Collapse
Affiliation(s)
- Amity G Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Xianyi Xiong
- BioTechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Madison Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| | - Michael J Sadowsky
- Department of Soil, Water, and Climate, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Margarita Diaz
- Proyecto Fronterizo de Educación Ambiental, A.C., Tijuana, Mexico
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States
| |
Collapse
|
10
|
Microbial source tracking using metagenomics and other new technologies. J Microbiol 2021; 59:259-269. [DOI: 10.1007/s12275-021-0668-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
|
11
|
Tintle N, Van De Griend K, Ulrich R, Wade RD, Baar TM, Boven E, Cooper CEA, Couch O, Eekhoff L, Fry B, Goszkowicz GK, Hecksel MA, Heynen A, Laughlin JA, Les SM, Lombard TR, Munson BD, Peterson JM, Schumann E, Settecerri DJ, Spry JE, Summerfield MJ, Sunder M, Wade DR, Zonnefeld CG, Brokus SA, Moen FS, Slater AD, Peterson JW, Pikaart MJ, Krueger BP, Best AA. Diarrhea prevalence in a randomized, controlled prospective trial of point-of-use water filters in homes and schools in the Dominican Republic. Trop Med Health 2021; 49:1. [PMID: 33397511 PMCID: PMC7780396 DOI: 10.1186/s41182-020-00291-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background Lack of sustainable access to clean drinking water continues to be an issue of paramount global importance, leading to millions of preventable deaths annually. Best practices for providing sustainable access to clean drinking water, however, remain unclear. Widespread installation of low-cost, in-home, point of use water filtration systems is a promising strategy. Methods We conducted a prospective, randomized, controlled trial whereby 16 villages were selected and randomly assigned to one of four treatment arms based on the installation location of Sawyer® PointONE™ filters (filter in both home and school; filter in home only; filter in school only; control group). Water samples and self-reported information on diarrhea were collected at multiple times throughout the study. Results Self-reported household prevalence of diarrhea decreased from 25.6 to 9.76% from installation to follow-up (at least 7 days, and up to 200 days post-filter installation). These declines were also observed in diarrhea with economic or educational consequences (diarrhea which led to medical treatment and/or missing school or work) with baseline prevalence of 9.64% declining to 1.57%. Decreases in diarrhea prevalence were observed across age groups. There was no evidence of a loss of efficacy of filters up to 200 days post-filter installation. Installation of filters in schools was not associated with decreases in diarrhea prevalence in school-aged children or family members. Unfiltered water samples both at schools and homes contained potential waterborne bacterial pathogens, dissolved heavy metals and metals associated with particulates. All dissolved metals were detected at levels below World Health Organization action guidelines. Conclusions This controlled trial provides strong evidence of the effectiveness of point-of-use, hollow fiber membrane filters at reducing diarrhea from bacterial sources up to 200 days post-installation when installed in homes. No statistically significant reduction in diarrhea was found when filters were installed in schools. Further research is needed in order to explore filter efficacy and utilization after 200 days post-installation. Trial registration ClinicalTrials.gov, NCT03972618. Registered 3 June 2019—retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s41182-020-00291-y.
Collapse
Affiliation(s)
- Nathan Tintle
- Department of Mathematics and Statistics, Dordt University, 700 7th St. NE, Sioux Center, IA, 51250, USA
| | - Kristin Van De Griend
- Department of Sociology, Dordt University, 700 7th St. NE, Sioux Center, IA, 51250, USA
| | - Rachel Ulrich
- Department of Mathematical Sciences, Montana State University, P.O. Box 172400, Bozeman, MT, 59717, USA
| | - Randall D Wade
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Tena M Baar
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Emma Boven
- Department of Mathematics and Statistics, Dordt University, 700 7th St. NE, Sioux Center, IA, 51250, USA
| | - Carolyn E A Cooper
- Chemistry Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Olivia Couch
- Department of Mathematics and Statistics, Dordt University, 700 7th St. NE, Sioux Center, IA, 51250, USA
| | - Lauren Eekhoff
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Benjamin Fry
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Grace K Goszkowicz
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Maya A Hecksel
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Adam Heynen
- Department of Biology, Dordt University, 700 7th St. NE, Sioux Center, IA, 51250, USA
| | - Jade A Laughlin
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Sydney M Les
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Taylor R Lombard
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - B Daniel Munson
- Department of Mathematics and Statistics, Dordt University, 700 7th St. NE, Sioux Center, IA, 51250, USA
| | - Jonas M Peterson
- Chemistry Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Eric Schumann
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | | | - Jacob E Spry
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | | | - Meghana Sunder
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Daniel R Wade
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Caden G Zonnefeld
- Department of Mathematics and Statistics, Dordt University, 700 7th St. NE, Sioux Center, IA, 51250, USA
| | - Sarah A Brokus
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Francesco S Moen
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Adam D Slater
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Jonathan W Peterson
- Geological and Environmental Sciences Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Michael J Pikaart
- Chemistry Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Brent P Krueger
- Chemistry Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA
| | - Aaron A Best
- Biology Department, Hope College, 35 E. 12th St, Holland, MI, 49423, USA.
| |
Collapse
|
12
|
Ghemrawi M, Torres AR, Duncan G, Colwell R, Dadlani M, McCord B. The genital microbiome and its potential for detecting sexual assault. Forensic Sci Int Genet 2020; 51:102432. [PMID: 33307384 DOI: 10.1016/j.fsigen.2020.102432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Since its inception, the Human Microbiome Project (HMP) has provided key discoveries that can be applied to forensics, in addition to those of obvious medical value. Whether for postmortem interval estimation, geolocation, or human identification, there are many applications of the microbiome as an investigative lead for forensic casework. The human skin microbiome has shown great potential for use in studies of transfer and human identification, however there has been little focus on the genital microbiome, in particular penile skin which differs from other body sites. Our preliminary data on both the penile and vaginal microbiome demonstrates potential value in cases of sexual assault. In this study we describe genital microbial signatures based on the analysis of five male and five female genital samples and compare these results to those from longitudinal studies. Selected taxa, e.g., Gardnerella, Lactobacilli, Finegoldia, Peptoniphilus, and Anaerococci, are shown to be candidate constituents of the genital microbiome that merit investigation for use in sexual assault casework.
Collapse
Affiliation(s)
- Mirna Ghemrawi
- Florida International University, Miami, FL 33199, United States
| | | | - George Duncan
- Nova Southeastern University, Fort Lauderdale-Davie, FL 33314, United States
| | - Rita Colwell
- University of Maryland, College Park, MD 20740, United States
| | | | - Bruce McCord
- Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
13
|
Mathai PP, Staley C, Sadowsky MJ. Sequence-enabled community-based microbial source tracking in surface waters using machine learning classification: A review. J Microbiol Methods 2020; 177:106050. [DOI: 10.1016/j.mimet.2020.106050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
|