1
|
Liang X, Li B, Dong X, Zhao X, Li H, Ye Y, Ma H, Ran S, Li J. Impact of microplastics exposure on the reconfiguration of viral community structure and disruption of ecological functions in the digestive gland of Mytilus coruscus. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138692. [PMID: 40403370 DOI: 10.1016/j.jhazmat.2025.138692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Microplastics (MPs) pose ecological risks by serving as viral vectors and disrupting host microbiomes. This study investigated the impact of MPs on the digestive gland virome of Mytilus coruscus through an in situ exposure experiment on Xixuan Island, Zhoushan, China, using polyethylene MPs and metagenomic sequencing. MPs biofilms were dominated by lytic viruses (> 99 %) with low diversity (Shannon index = 4.10 ± 0.39), whereas digestive glands harbored a more diverse virome (Shannon index = 7.26 ± 1.26). MPs ingestion significantly reduced virome diversity and altered viral community composition. Functional analysis showed that MPs biofilms were enriched in genes related to genetic processing, carbohydrate metabolism and membrane biogenesis, while transcription- and replication-related genes declined (P < 0.05) in digestive glands post-ingestion. MPs biofilms carried abundant antibiotic resistance genes (ARGs) and virulence factors, selectively enriching multidrug resistance genes (efrA, patB) while reducing functional viral gene abundance. Metal (Zn, Hg, As) and biocide resistance genes were prevalent in MPs biofilms but declined post-ingestion. Additionally, MPs ingestion weakened microbial network stability, potentially impairing immune regulation and metabolic homeostasis. These findings underscore MPs' role in shaping viral communities and spreading resistance genes, heightening ecological risks in marine environments.
Collapse
Affiliation(s)
- Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Li
- Zhejiang Province Key Laboratory of Mariculture and Enhancement, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Xiangli Dong
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xinyu Zhao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hongfei Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Haiping Ma
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Suzhen Ran
- School of Foundation Studies, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
2
|
Cuevas-Ferrando E, Sánchez G, Pérez-Cataluña A. Exploring plant virus diversity in wastewater and reclaimed water through metagenomic analysis. WATER RESEARCH 2025; 270:122827. [PMID: 39602961 DOI: 10.1016/j.watres.2024.122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The use of reclaimed water for agricultural activities is being widely employed to address drought and water scarcity. Nevertheless, the disinfection processes do not consistently facilitate the complete removal of all eukaryotic viruses within these reclaimed waters. Consequently, it may pose a risk not only to humans but also to irrigated plants. We analyzed 48 influent and 48 effluent samples from 4 different wastewater treatment plants (WWTPs) by high-throughput sequencing (HTS) to characterize plant-associated virome over a one-year period. Our results showed high levels of plant viruses in both influent and effluent waters. The predominant family identified was Virgaviridae, recognized for its high environmental persistence. Notably, the identification of Tomato Brown Rugose Fruit virus (ToBRFV), classified as a harmful organism by the European Union and subject to strict containment measures to control its spread, highlights the importance of monitoring reclaimed water to mitigate the spread of such viruses into the environment. These findings underscore the need of analyzing reclaimed water from a One Health perspective, ensuring its safety for humans, animals, plants, and the environment alike.
Collapse
Affiliation(s)
- Enric Cuevas-Ferrando
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia Spain
| | - Gloria Sánchez
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia Spain
| | - Alba Pérez-Cataluña
- VISAFELab, Department of Preservation and Food Safety Technologies, IATA-CSIC, Valencia Spain.
| |
Collapse
|
3
|
Hegarty B. Making waves: Intelligent phage cocktail design, a pathway to precise microbial control in water systems. WATER RESEARCH 2025; 268:122594. [PMID: 39405620 DOI: 10.1016/j.watres.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 12/19/2024]
Abstract
Current practices in water and wastewater treatment to control unwanted microbes have led to new problems, including health effects from disinfection byproducts, growth of opportunistic pathogens resistant to residual disinfectants (e.g., chlorine), and antibiotic resistance. These challenges are spurring interest in rethinking our practices of microbial control. Simultaneously, advances in molecular biology and computation power are driving renewed interest in using phages (viruses that infect bacteria) to precisely control microbial growth (aka, phage biocontrol). In this Making Waves article, I begin by reviewing the current state of research into phage cocktail design, emphasizing our limited understanding of the features of successful phage cocktails (combinations of multiple types of phages). I describe the state of modeling phage-bacteria interactions and underscore the need for increasing research efforts to predict phage cocktail success, a key gap slowing the application of phage biocontrol. I also detail how research must also focus on techniques for engineering more effective phages to offer a more rapid alternative to phage discovery from natural environments. In this way, phage cocktails comprised of phages with complementary infection strategies may be designed. The final area for increased research effort that I highlight is the need for phage cocktail design to account for possible unintended environmental effects, a risk that is increasingly acknowledged in phage ecology studies but mostly ignored by those developing phage biocontrol technologies. By focusing more research effort towards the areas necessary for intelligent phage cocktail design, we can accelerate the development of phage-based biocontrol in water systems and improve public health.
Collapse
Affiliation(s)
- Bridget Hegarty
- Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH, 44118, USA.
| |
Collapse
|
4
|
Bhatt P, Li Y, Xagoraraki I. Genomic mapping of wastewater bacteriophage may predict potential bacterial pathogens infecting the community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176834. [PMID: 39396796 DOI: 10.1016/j.scitotenv.2024.176834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Most existing wastewater surveillance studies that focus on viruses have identified a large fraction of bacteriophages. Identifying bacteria by considering bacteriophage-host interactions is a novel method for detecting bacterial pathogens circulating in a community, using wastewater surveillance. This study aims to identify human-related bacterial pathogens in municipal wastewater collected in metro Detroit, using high-throughput sequencing and bioinformatics. Untreated municipal wastewater samples were collected on August 11, 2020, and bacteriophages were concentrated using the VIRus ADsorption-ELution (VIRADEL) method. Bacteriophage-related contigs in samples ranged from 15.53 % to 18.91 %, with 2477 classified and 8853 unclassified contigs. Most identified bacteriophages were from Caudoviricetes and Malgrandaviricetes classes belonging to 19 families. Hosts of bacteriophages were predicted with the PhaBOX (CHERRY) tool. The results indicated that out of the 2477 classified phages, 2373 were associated with known bacterial hosts. Also, out of 8853 unclassified bacteriophages, 8421 were associated with known bacterial hosts, and the remaining 432 were with unknown bacterial hosts. Among all bacteriophage-associated hosts, 399 were identified as pathogenic bacteria at the species level. Approximately, 85 % of the identified pathogenic bacteria are reported to be associated with human diseases. Genome quality assessments showed that 15 bacteriophages had nearly complete genomes, which were further analyzed to understand bacteriophage-bacteria interactions in wastewater. Identified hosts of these complete-genome phages included human pathogens such as Salmonella enterica, Bacillus cereus, Achromobacter xylosoxidans, and Escherichia coli. The S. enterica bacteriophage (k141_1005294) genomic map was annotated, and responsible open reading frames (ORFs) were characterized to illustrate bacteriophage behavior during infection of pathogenic bacteria in untreated wastewater. To the best of our knowledge, this is the first attempt to characterize human bacterial pathogens in wastewater through bacteriophage-pathogen interactions. Novel bioinformatic approaches enhance pathogen detection and improve the understanding of community wastewater microbiomes.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Yabing Li
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Gu Liu C, Thompson BE, Chang JD, Min L, Maresso AW. Construction and characterization of DNA libraries from cultured phages and environmental viromes. Appl Environ Microbiol 2024; 90:e0117124. [PMID: 39315792 PMCID: PMC11497775 DOI: 10.1128/aem.01171-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Despite many efforts to understand and leverage the functional potential of environmental viromes, most bacteriophage genes are largely uncharacterized. To explore novel biology from uncultivated microbes like phages, metagenomics has emerged as a powerful tool to directly mine new genes without the need to culture the diverse microbiota and the viruses within. When a pure computational approach cannot infer gene function, it may be necessary to create a DNA library from environmental genomic DNA, followed by the screening of that library for a particular function. However, these screens are often initiated without a metagenomic analysis of the completed DNA library being reported. Here, we describe the construction and characterization of DNA libraries from a single cultured phage (ΦT4), five cultured Escherichia coli phages, and three metagenomic viral sets built from freshwater, seawater, and wastewater samples. Through next-generation sequencing of five independent samplings of the libraries, we found a consistent number of recovered genes per replicate for each library, with many genes classifiable via the KEGG and Pharokka databases. By characterizing the size of the genes and inserts, we found that our libraries contain a median of one to two genes per contig with a median gene length of 303-381 bp for all libraries, reflective of the small genomes of viruses. The environmental libraries were genetically diverse compared to the single phage and multi-phage libraries. Additionally, we found reduced coverage of individual genomes when five phages were used as opposed to one. Taken together, this work provides a comprehensive analysis of the DNA libraries from phage genomes that can be used for metagenomic exploration and functional screens to infer and identify new biology.IMPORTANCEFunctional metagenomics is an approach that aims to characterize the putative biological function of genes in the microbial world. This includes an examination of the sequencing data collected from a pooled source of diverse microbes and inference of gene function by comparison to annotated and studied genes from public databases. At times, DNA libraries are made from these genes, and the library is screened for a specific function. Hits are validated using a combination of biological, computational, and structural analysis. Left unresolved is a detailed characterization of the library, both its diversity and content, for the purposes of imputing function entirely by computational means, a process that may yield findings that aid in designing useful screens to identify novel gene functions. In this study, we constructed libraries from cultured phages and uncultured viromes from the environment and characterized some important parameters, such as gene number, genes per contig, ratio of hypothetical to known proteins, total genomic coverage and recovery, and the effect of pooling genetic information from multiple sources, to provide a better understanding of the nature of these libraries. This work will aid the design and implementation of future screens of pooled DNA libraries to discover and isolate viral genes with novel biology across various biomes.
Collapse
Affiliation(s)
- Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILΦR LABS: Tailored Antibacterials and Innovative Laboratories for phage (Φ) Research, Baylor College of Medicine, Houston, Texas, USA
| | | | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Lorna Min
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- TAILΦR LABS: Tailored Antibacterials and Innovative Laboratories for phage (Φ) Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Peng L, Yang F, Shi J, Liu Y, Pan L, Mao D, Luo Y. Insights into the panorama of multiple DNA viruses in municipal wastewater and recycled sludge in Tianjin, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124215. [PMID: 38797349 DOI: 10.1016/j.envpol.2024.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Environmental viruses in wastewater and sludge are widely recognized for their roles in waterborne diseases. However, previous studies mainly focused on RNA viruses, and little is known about the diversity of DNA viral communities and their driving factors in municipal wastewater treatment environments. Herein, we conducted a pilot study to explore DNA virus profiles in municipal wastewater and recycled sludge by metagenomics method, and track their temporal changes in northern China. Results showed that 467 viral species were co-shared among all the samples. We identified six families of human viruses with a prevalence of 0.1%, which were rare but relatively stable in wastewater and sludge for six months. Adenoviridae, Parvoviridae, and Herpersviridae were the most dominant human viral families in municipal wastewater and recycled sludge. A time series of samples revealed that the dynamic changes of human DNA viruses were stable based on qPCR results, particularly for high-risk fecal-oral transmission viruses of adenovirus, bocavirus, polyomavirus, human gamma herpesvirus, human papillomavirus, and hepatitis B virus. Concentrations of Adenovirus (5.39-7.48 log10 copies/L) and bocavirus (4.36-7.48 log10 copies/L) were observed to be the highest in these samples compared to other viruses. Our findings demonstrated the DNA viruses' high prevalence and persistence in municipal wastewater treatment environments, highlighting the value of enhancing public health responses based on wastewater-based epidemiology.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jingliang Shi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China
| | - YiXin Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liuzhu Pan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
7
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Plastisphere-hosted viruses: A review of interactions, behavior, and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134533. [PMID: 38749241 DOI: 10.1016/j.jhazmat.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Microbial communities, including bacteria, diatoms, and fungi, colonize plastic surfaces, forming biofilms known as the "plastisphere." Recent research has revealed that plastispheres also host a wide range of viruses, sparking interest in microbial ecology and virology. This shared habitat allows viruses to replicate, interact, infect, and spread, potentially impacting the environment and human health. Consequently, viruses attached to microplastics are now recognized to have broad effects on cellular and immune responses. However, the ecology and implications of viruses hosted in plastisphere habitats remain poorly understood, highlighting their fundamental importance as a subject of study. This review explores various pathways for virus attachment to plastispheres, factors influencing these interactions, their impacts within plastisphere and host-associated environments, and associated issues. It also summarizes current research and identifies knowledge gaps. We anticipate that this paper will help improve our predictive understanding of plastisphere viruses in natural settings and emphasizes the need for more research in real-world environments to advance the field.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| |
Collapse
|
8
|
Zhang J, Tang A, Jin T, Sun D, Guo F, Lei H, Lin L, Shu W, Yu P, Li X, Li B. A panoramic view of the virosphere in three wastewater treatment plants by integrating viral-like particle-concentrated and traditional non-concentrated metagenomic approaches. IMETA 2024; 3:e188. [PMID: 38898980 PMCID: PMC11183165 DOI: 10.1002/imt2.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/21/2024]
Abstract
Wastewater biotreatment systems harbor a rich diversity of microorganisms, and the effectiveness of biotreatment systems largely depends on the activity of these microorganisms. Specifically, viruses play a crucial role in altering microbial behavior and metabolic processes throughout their infection phases, an aspect that has recently attracted considerable interest. Two metagenomic approaches, viral-like particle-concentrated (VPC, representing free viral-like particles) and non-concentrated (NC, representing the cellular fraction), were employed to assess their efficacy in revealing virome characteristics, including taxonomy, diversity, host interactions, lifestyle, dynamics, and functional genes across processing units of three wastewater treatment plants (WWTPs). Our findings indicate that each approach offers unique insights into the viral community and functional composition. Their combined use proved effective in elucidating WWTP viromes. We identified nearly 50,000 viral contigs, with Cressdnaviricota and Uroviricota being the predominant phyla in the VPC and NC fractions, respectively. Notably, two pathogenic viral families, Asfarviridae and Adenoviridae, were commonly found in these WWTPs. We also observed significant differences in the viromes of WWTPs processing different types of wastewater. Additionally, various phage-derived auxiliary metabolic genes (AMGs) were active at the RNA level, contributing to the metabolism of the microbial community, particularly in carbon, sulfur, and phosphorus cycling. Moreover, we identified 29 virus-carried antibiotic resistance genes (ARGs) with potential for host transfer, highlighting the role of viruses in spreading ARGs in the environment. Overall, this study provides a detailed and integrated view of the virosphere in three WWTPs through the application of VPC and NC metagenomic approaches. Our findings enhance the understanding of viral communities, offering valuable insights for optimizing the operation and regulation of wastewater treatment systems.
Collapse
Affiliation(s)
- Jiayu Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Research Center for Eco‐Environmental EngineeringDongguan University of TechnologyDongguanChina
| | - Aixi Tang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Tao Jin
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
| | - Deshou Sun
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Shenzhen Tongchen Biotechnology Co., LimitedShenzhenChina
| | - Fangliang Guo
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Wensheng Shu
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Pingfeng Yu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
| | - Xiaoyan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| |
Collapse
|
9
|
Smith MF, Maqsood R, Sullins RA, Driver EM, Halden RU, Lim ES. Seasonality of respiratory, enteric, and urinary viruses revealed by wastewater genomic surveillance. mSphere 2024; 9:e0010524. [PMID: 38712930 PMCID: PMC11237574 DOI: 10.1128/msphere.00105-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Wastewater surveillance can reveal population-level infectious disease burden and emergent public health threats can be reliably assessed through wastewater surveillance. While molecular methods for wastewater monitoring of microorganisms have traditionally relied on PCR-based approaches, next-generation sequencing (NGS) can provide deeper insights via genomic analyses of multiple diverse pathogens. We conducted a year-long sequencing surveillance of 1,408 composite wastewater samples collected from 12 neighborhood-level access points in the greater Tempe area, Arizona, USA, and show that variation in wastewater viruses is driven by seasonal time and location. The temporal dynamics of viruses in wastewater were influenced cyclically, with the most dissimilarity between samples 23 weeks apart (i.e., winter vs summer, spring vs fall). We identified diverse urinary and enteric viruses including polyomaviruses, astroviruses, and noroviruses, and showed that their genotypes/subtypes shifted across seasons. We show that while wastewater data of certain respiratory viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly correlate with clinical case rates, laboratory-reported case incidences were discordant with surges of high viral load in wastewater for other viruses like human coronavirus 229E. These results demonstrate the utility of wastewater sequencing for informing decision-making in public health.IMPORTANCEWastewater surveillance can provide insights into the spread of pathogens in communities. Advances in next-generation sequencing (NGS) methodologies allow for more precise detection of viruses in wastewater. Long-term wastewater surveillance of viruses is an important tool for public health preparedness. This system can act as a public health observatory that gives real-time early warning for infectious disease outbreaks and improved response times.
Collapse
Affiliation(s)
- Matthew F Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Regan A Sullins
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Erin M Driver
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rolf U Halden
- Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- National Centre for Infectious Diseases, Singapore, Singapore
| |
Collapse
|
10
|
Zhang Y, Chen H, Lian C, Cao L, Guo Y, Wang M, Zhong Z, Li M, Zhang H, Li C. Insights into phage-bacteria interaction in cold seep Gigantidas platifrons through metagenomics and transcriptome analyses. Sci Rep 2024; 14:10540. [PMID: 38719945 PMCID: PMC11078923 DOI: 10.1038/s41598-024-61272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.
Collapse
Affiliation(s)
- Yan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Lian
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lei Cao
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Guo
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhaoshan Zhong
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengna Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Flores VS, Amgarten DE, Iha BKV, Ryon KA, Danko D, Tierney BT, Mason C, da Silva AM, Setubal JC. Discovery and description of novel phage genomes from urban microbiomes sampled by the MetaSUB consortium. Sci Rep 2024; 14:7913. [PMID: 38575625 PMCID: PMC10994904 DOI: 10.1038/s41598-024-58226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Bacteriophages are recognized as the most abundant members of microbiomes and have therefore a profound impact on microbial communities through the interactions with their bacterial hosts. The International Metagenomics and Metadesign of Subways and Urban Biomes Consortium (MetaSUB) has sampled mass-transit systems in 60 cities over 3 years using metagenomics, throwing light into these hitherto largely unexplored urban environments. MetaSUB focused primarily on the bacterial community. In this work, we explored MetaSUB metagenomic data in order to recover and analyze bacteriophage genomes. We recovered and analyzed 1714 phage genomes with size at least 40 kbp, from the class Caudoviricetes, the vast majority of which (80%) are novel. The recovered genomes were predicted to belong to temperate (69%) and lytic (31%) phages. Thirty-three of these genomes have more than 200 kbp, and one of them reaches 572 kbp, placing it among the largest phage genomes ever found. In general, the phages tended to be site-specific or nearly so, but 194 genomes could be identified in every city from which phage genomes were retrieved. We predicted hosts for 48% of the phages and observed general agreement between phage abundance and the respective bacterial host abundance, which include the most common nosocomial multidrug-resistant pathogens. A small fraction of the phage genomes are carriers of antibiotic resistance genes, and such genomes tended to be particularly abundant in the sites where they were found. We also detected CRISPR-Cas systems in five phage genomes. This study expands the previously reported MetaSUB results and is a contribution to the knowledge about phage diversity, global distribution, and phage genome content.
Collapse
Affiliation(s)
- Vinicius S Flores
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Deyvid E Amgarten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Bruno Koshin Vázquez Iha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | | | | | - Braden T Tierney
- Weill Cornell Medicine, New York, NY, USA
- Harvard Medical School, Cambridge, MA, USA
| | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
12
|
Goff JL, Lui LM, Nielsen TN, Poole FL, Smith HJ, Walker KF, Hazen TC, Fields MW, Arkin AP, Adams MWW. Mixed waste contamination selects for a mobile genetic element population enriched in multiple heavy metal resistance genes. ISME COMMUNICATIONS 2024; 4:ycae064. [PMID: 38800128 PMCID: PMC11128244 DOI: 10.1093/ismeco/ycae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/11/2024] [Indexed: 05/29/2024]
Abstract
Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context provided by completed MGE assemblies.
Collapse
Affiliation(s)
- Jennifer L Goff
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Kathleen F Walker
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37916, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37916, United States
- Genome Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Bioengineering, University of California, Berkeley, CA 94720, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
13
|
Stockdale SR, Blanchard AM, Nayak A, Husain A, Nashine R, Dudani H, McClure CP, Tarr AW, Nag A, Meena E, Sinha V, Shrivastava SK, Hill C, Singer AC, Gomes RL, Acheampong E, Chidambaram SB, Bhatnagar T, Vetrivel U, Arora S, Kashyap RS, Monaghan TM. RNA-Seq of untreated wastewater to assess COVID-19 and emerging and endemic viruses for public health surveillance. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 14:100205. [PMID: 37193348 PMCID: PMC10150210 DOI: 10.1016/j.lansea.2023.100205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Background The COVID-19 pandemic showcased the power of genomic sequencing to tackle the emergence and spread of infectious diseases. However, metagenomic sequencing of total microbial RNAs in wastewater has the potential to assess multiple infectious diseases simultaneously and has yet to be explored. Methods A retrospective RNA-Seq epidemiological survey of 140 untreated composite wastewater samples was performed across urban (n = 112) and rural (n = 28) areas of Nagpur, Central India. Composite wastewater samples were prepared by pooling 422 individual grab samples collected prospectively from sewer lines of urban municipality zones and open drains of rural areas from 3rd February to 3rd April 2021, during the second COVID-19 wave in India. Samples were pre-processed and total RNA was extracted prior to genomic sequencing. Findings This is the first study that has utilised culture and/or probe-independent unbiased RNA-Seq to examine Indian wastewater samples. Our findings reveal the detection of zoonotic viruses including chikungunya, Jingmen tick and rabies viruses, which have not previously been reported in wastewater. SARS-CoV-2 was detectable in 83 locations (59%), with stark abundance variations observed between sampling sites. Hepatitis C virus was the most frequently detected infectious virus, identified in 113 locations and co-occurring 77 times with SARS-CoV-2; and both were more abundantly detected in rural areas than urban zones. Concurrent identification of segmented virus genomic fragments of influenza A virus, norovirus, and rotavirus was observed. Geographical differences were also observed for astrovirus, saffold virus, husavirus, and aichi virus that were more prevalent in urban samples, while the zoonotic viruses chikungunya and rabies, were more abundant in rural environments. Interpretation RNA-Seq can effectively detect multiple infectious diseases simultaneously, facilitating geographical and epidemiological surveys of endemic viruses that could help direct healthcare interventions against emergent and pre-existent infectious diseases as well as cost-effectively and qualitatively characterising the health status of the population over time. Funding UK Research and Innovation (UKRI) Global Challenges Research Fund (GCRF) grant number H54810, as supported by Research England.
Collapse
Affiliation(s)
| | - Adam M. Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Amit Nayak
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Aliabbas Husain
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Rupam Nashine
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Hemanshi Dudani
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - C. Patrick McClure
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
| | - Alexander W. Tarr
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, United Kingdom
- Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Aditi Nag
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Ekta Meena
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Vikky Sinha
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Sandeep K. Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt. Ltd., Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Rachel L. Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
| | - Edward Acheampong
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, United Kingdom
- Department of Statistics and Actuarial Science, University of Ghana, P.O. Box, LG 115, Legon, Ghana
| | - Saravana B. Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, KA, India
| | - Tarun Bhatnagar
- ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, 590010, India
- Virology and Biotechnology Division, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, 6-E, Malviya Industrial Area, Malviya Nagar, Jaipur, India
| | - Rajpal Singh Kashyap
- Research Centre, Dr G.M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Tanya M. Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Niu L, Zhao S, Chen Y, Li Y, Zou G, Tao Y, Zhang W, Wang L, Zhang H. Diversity and potential functional characteristics of phage communities colonizing microplastic biofilms. ENVIRONMENTAL RESEARCH 2023; 219:115103. [PMID: 36549484 DOI: 10.1016/j.envres.2022.115103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The multiple ecological influences and potential microbial degradation of microplastics are generally attributed to the microbial communities colonized on microplastics. Phages play an important role in the composition and function of their bacterial hosts, yet the occurrence and the potential functional characteristics of phages in the biofilms of microplastics have not been known. This study, for the first time, explored the diversity, composition, and potential function characteristics of phage communities living in the biofilms of PP, PE, and PET microplastics and stones, cultured in the same site, via the metagenome method. The results showed that a total of 240 non-redundant virus OTUs (vOTUs), distributed in at least four orders and seven families, were detected from biofilm metagenomes of microplastics. Compared to stones, some phages were selectively enriched by microplastic biofilms, with 13 vOTUs uniquely colonized on three microplastics, and these vOTUs mainly belong to the family Autographiviridae and Podoviridae. Except for the evenness of PP, the richness index, Chao 1 index, and abundance of phage communities of three microplastics were much higher than that of stone. At least 8 bacterial phyla and 72 genera were possibly infected by phages. Compared to the stones, both composition and abundance of the phages and hosts presented significant and strong correlations for three microplastics. Some of the bacterial hosts on microplastics were likely involved in the microplastic degradation, fermenters, nitrogen transformation processes, and so on. A total of 124 encoding auxiliary metabolic genes (AMGs) were detected from viral contigs. The abundance of AMGs in microplastics was much higher than that of stones, which may provide more direct or indirect support for the bacterial degradation of microplastics. This study provides a new perspective on the occurrence and potential functions of phages on microplastic biofilms, thus expanding our understanding of microbial communities on microplastic biofilms.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Shiqin Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yamei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Guanhua Zou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ye Tao
- Shanghai BIOZERON Biotechnology Co., Ltd, Shanghai, 201800, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
15
|
Rothman JA, Saghir A, Chung SA, Boyajian N, Dinh T, Kim J, Oval J, Sharavanan V, York C, Zimmer-Faust AG, Langlois K, Steele JA, Griffith JF, Whiteson KL. Longitudinal metatranscriptomic sequencing of Southern California wastewater representing 16 million people from August 2020-21 reveals widespread transcription of antibiotic resistance genes. WATER RESEARCH 2023; 229:119421. [PMID: 36455460 DOI: 10.1016/j.watres.2022.119421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Municipal wastewater provides a representative sample of human fecal waste across a catchment area and contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-associated and medically important microbial populations, and may be useful to assay disease prevalence and antimicrobial resistance (AMR). Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from 275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approximately 16 million people in Southern California between August 2020 - August 2021. We characterized bacterial and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal mutants. We show that AMR diversity varied between WTPs (as measured through PERMANOVA, P < 0.001) and that the relative abundance of many individual AMR genes/variants increased over time (as measured with MaAsLin2, Padj < 0.05). Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are geographical signatures to microbial transcription. We captured the transcription of gene pathways common to bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological targets for microbial water quality assessment can be developed. To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis of a large population's wastewater to date and demonstrates our ability to monitor the presence and activity of microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/variants and metabolic pathways, increasing our understanding of AMR activity across large human populations and sewer sheds.
Collapse
Affiliation(s)
- Jason A Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America.
| | - Andrew Saghir
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Seung-Ah Chung
- Genomics High-Throughput Facility, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Nicholas Boyajian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Thao Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Jinwoo Kim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Jordan Oval
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Vivek Sharavanan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Courtney York
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America
| | - Amity G Zimmer-Faust
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Kylie Langlois
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, United States of America
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States of America.
| |
Collapse
|
16
|
Lin X, Yang S, Gong Z, Ni R, Shi X, Song L. Viral community in landfill leachate: Occurrence, bacterial hosts, mediation antibiotic resistance gene dissemination, and function in municipal solid waste decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158561. [PMID: 36087678 DOI: 10.1016/j.scitotenv.2022.158561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
A municipal solid waste (MSW) landfill is a significant source of antibiotic resistance, pathogens and viruses and also a habitat for microbial consortia that perform MSW decomposition. Viruses are of great significance in ecological interactions such as MSW decomposition and antibiotic resistance gene (ARG) transmission. In this study, the viral community structure and the associated driver, the linkage of viruses and their bacterial hosts, the virus-associated ARG dissemination and virtual community function on MSW decomposition were investigated in landfill leachate from seven cities, China. The seven cities include four megacities, two large-scale cities and one small-scale city, representing the leachate characters of China. The results showed that the leachates were dominated by the phage families Siphoviridae, Myoviridae and Podoviridae (91.7 ± 3.6) %. Their putative hosts were the important MSW decomposers Lactobacillus, Pseudomonas, Clostridium, Proteiniphilum, and Bacteroides. The structure of the viral community was significantly affected by pH (P = 0.007, analyzed by RDA) and the bacterial community (R = 0.83, P < 0.001, analyzed by Mantel test). The relative abundance of ARGs showed a strong correlation (R > 0.8, P < 0.01) with viral family, suggesting that viruses play an important role in ARGs dissemination. Phage regulate bacterial population abundance through top-down effects, thus participating in MSW decomposition. These results demonstrate that viral community are involve in ARGs transmission and dissemination and mediate MSW decomposition in landfill.
Collapse
Affiliation(s)
- Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Zhourui Gong
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi 247230, China.
| |
Collapse
|
17
|
Bassi C, Guerriero P, Pierantoni M, Callegari E, Sabbioni S. Novel Virus Identification through Metagenomics: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122048. [PMID: 36556413 PMCID: PMC9784588 DOI: 10.3390/life12122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines.
Collapse
Affiliation(s)
- Cristian Bassi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Paola Guerriero
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marina Pierantoni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Elisa Callegari
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Sabbioni
- Laboratorio per Le Tecnologie delle Terapie Avanzate (LTTA), University of Ferrara, 44121 Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-053-245-5319
| |
Collapse
|
18
|
Gu X, Yang Y, Mao F, Lee WL, Armas F, You F, Needham DM, Ng C, Chen H, Chandra F, Gin KY. A comparative study of flow cytometry-sorted communities and shotgun viral metagenomics in a Singapore municipal wastewater treatment plant. IMETA 2022; 1:e39. [PMID: 38868719 PMCID: PMC10989988 DOI: 10.1002/imt2.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/30/2022] [Accepted: 06/19/2022] [Indexed: 06/14/2024]
Abstract
Traditional or "bulk" viral enrichment and amplification methods used in viral metagenomics introduce unavoidable bias in viral diversity. This bias is due to shortcomings in existing viral enrichment methods and overshadowing by the more abundant viral populations. To reduce the complexity and improve the resolution of viral diversity, we developed a strategy coupling fluorescence-activated cell sorting (FACS) with random amplification and compared this to bulk metagenomics. This strategy was validated on both influent and effluent samples from a municipal wastewater treatment plant using the Modified Ludzack-Ettinger (MLE) process as the treatment method. We found that DNA and RNA communities generated using bulk samples were mostly different from those derived following FACS for both treatments before and after MLE. Before MLE treatment, FACS identified five viral families and 512 viral annotated contigs. Up to 43% of mapped reads were not detected in bulk samples. Nucleo-cytoplasmic large DNA viral families were enriched to a greater extent in the FACS-coupled subpopulations compared with bulk samples. FACS-coupled viromes captured a single-contig viral genome associated with Anabaena phage, which was not observed in bulk samples or in FACS-sorted samples after MLE. These short metagenomic reads, which were assembled into a high-quality draft genome of 46 kbp, were found to be highly dominant in one of the pre-MLE FACS annotated virome fractions (57.4%). Using bulk metagenomics, we identified that between Primary Settling Tank and Secondary Settling Tank viromes, Virgaviridae, Astroviridae, Parvoviridae, Picobirnaviridae, Nodaviridae, and Iridoviridae were susceptible to MLE treatment. In all, bulk and FACS-coupled metagenomics are complementary approaches that enable a more thorough understanding of the community structure of DNA and RNA viruses in complex environmental samples, of which the latter is critical for increasing the sensitivity of detection of viral signatures that would otherwise be lost through bulk viral metagenomics.
Collapse
Affiliation(s)
- Xiaoqiong Gu
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Yi Yang
- NUS Environmental Research InstituteNational University of SingaporeSingaporeSingapore
| | - Feijian Mao
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Fang You
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - David M. Needham
- Monterey Bay Aquarium Research InstituteMoss LandingCaliforniaUSA
- GEOMAR Helmholtz Centre for Ocean ResearchOcean EcoSystems Biology UnitKielGermany
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Charmaine Ng
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Hongjie Chen
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- Antimicrobial Resistance Interdisciplinary Research GroupSingapore‐MIT Alliance for Research and TechnologySingaporeSingapore
| | - Franciscus Chandra
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Karina Yew‐Hoong Gin
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
- NUS Environmental Research InstituteNational University of SingaporeSingaporeSingapore
| |
Collapse
|
19
|
Rothman JA, Saghir A, Chung SA, Boyajian N, Dinh T, Kim J, Oval J, Sharavanan V, York C, Zimmer-Faust AG, Langlois K, Steele JA, Griffith JF, Whiteson KL. Longitudinal metatranscriptomic sequencing of Southern California wastewater representing 16 million people from August 2020-21 reveals widespread transcription of antibiotic resistance genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.02.502560. [PMID: 35982656 PMCID: PMC9387120 DOI: 10.1101/2022.08.02.502560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Municipal wastewater provides a representative sample of human fecal waste across a catchment area and contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-associated and medically-important microbial populations, and may be useful to assay disease prevalence and antimicrobial resistance (AMR). Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from 275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approximately 16 million people in Southern California between August 2020 - August 2021. We characterized bacterial and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal mutants. We show that AMR diversity varied between WTPs and that the relative abundance of many individual AMR genes/variants increased over time and may be connected to antibiotic use during the COVID-19 pandemic. Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are geographical signatures to microbial transcription. We captured the transcription of gene pathways common to bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological targets for microbial water quality assessment can be developed. To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis of a large population's wastewater to date and demonstrates our ability to monitor the presence and activity of microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/variants and metabolic pathways, increasing our understanding of AMR activity across large human populations and sewer sheds.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Andrew Saghir
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Seung-Ah Chung
- Genomics High-Throughput Facility, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Nicholas Boyajian
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Thao Dinh
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Jinwoo Kim
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Jordan Oval
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Vivek Sharavanan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Courtney York
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | | | - Kylie Langlois
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - Joshua A. Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - John F. Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
20
|
Hegarty B, Dai Z, Raskin L, Pinto A, Wigginton K, Duhaime M. A snapshot of the global drinking water virome: Diversity and metabolic potential vary with residual disinfectant use. WATER RESEARCH 2022; 218:118484. [PMID: 35504157 DOI: 10.1016/j.watres.2022.118484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 05/22/2023]
Abstract
Viruses are important drivers of microbial community ecology and evolution, influencing microbial mortality, metabolism, and horizontal gene transfer. However, the effects of viruses remain largely unknown in many environments, including in drinking water systems. Drinking water metagenomic studies have offered a whole community perspective of bacterial impacts on water quality, but have not yet considered the influences of viruses. In this study, we address this gap by mining viral DNA sequences from publicly available drinking water metagenomes from distribution systems in six countries around the world. These datasets provide a snapshot of the taxonomic diversity and metabolic potential of the global drinking water virome; and provide an opportunity to investigate the effects of geography, climate, and drinking water treatment practices on viral diversity. Both environmental conditions and differences in sample processing were found to influence the viral composition. Using free chlorine as the residual disinfectant was associated with clear differences in viral taxonomic diversity and metabolic potential, with significantly fewer viral populations and less even viral community structures than observed in distribution systems without residual disinfectant. Additionally, drinking water viruses carry antibiotic resistance genes (ARGs), as well as genes to survive oxidative stress and nitrogen limitation. Through this study, we have demonstrated that viral communities are diverse across drinking water systems and vary with the use of residual disinfectant. Our findings offer directions for future research to develop a more robust understanding of how virus-bacteria interactions in drinking water distribution systems affect water quality.
Collapse
Affiliation(s)
- Bridget Hegarty
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA
| | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Georgia
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, Environmental and Water Resources Engineering Building, University of Michigan, 1351 Beal Ave. 181, Ann Arbor, MI 48109-2125, USA.
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105N University Ave., 4068 Biological Sciences Building, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
21
|
Zarza E, Diego-García E, García LV, Castro R, Mejía G, Herrera D, Cuevas R, Palomeque Á, Iša P, Guillén K. Monitoring SARS-CoV-2 in the Wastewater and Rivers of Tapachula, a Migratory Hub in Southern Mexico. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:199-211. [PMID: 35508751 PMCID: PMC9067545 DOI: 10.1007/s12560-022-09523-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 05/11/2023]
Abstract
The COVID-19 pandemic has been monitored by applying different strategies, including SARS-CoV-2 detection with clinical testing or through wastewater-based epidemiology (WBE). We used the latter approach to follow SARS-CoV-2 dispersion in Tapachula city, located in Mexico's tropical southern border region. Tapachula is a dynamic entry point for people seeking asylum in Mexico or traveling to the USA. Clinical testing facilities for SARS-CoV-2 monitoring are limited in the city. A total of eighty water samples were collected from urban and suburban rivers and sewage and a wastewater treatment plant over 4 months in Tapachula. We concentrated viral particles with a PEG-8000-based method, performed RNA extraction, and detected SARS-CoV-2 particles through RT-PCR. We considered the pepper mild mottle virus as a fecal water pollution biomarker and analytical control. SARS-CoV-2 viral loads (N1 and N2 markers) were quantified and correlated with official regional statistics of COVID-19 bed occupancy and confirmed cases (r > 91%). Our results concluded that WBE proved a valuable tool for tracing and tracking the COVID-19 pandemic in tropical countries with similar water temperatures (21-29 °C). Monitoring SARS-CoV-2 through urban and suburban river water sampling would be helpful in places lacking a wastewater treatment plant or water bodies with sewage discharges.
Collapse
Affiliation(s)
- Eugenia Zarza
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
- Investigadoras CONACyT- El Colegio de la Frontera Sur, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico City, Mexico
| | - Elia Diego-García
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
- Investigadoras CONACyT- El Colegio de la Frontera Sur, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, 03940, Mexico City, Mexico
| | - Luz Verónica García
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Ricardo Castro
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Gamaliel Mejía
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - David Herrera
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Raúl Cuevas
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Ángeles Palomeque
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico
| | - Pavel Iša
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Karina Guillén
- El Colegio de la Frontera Sur (ECOSUR), Grupo Académico de Biotecnología Ambiental, Carretera Antiguo Aeropuerto Km 2.5, 30700, Tapachula, Chiapas, Mexico.
| |
Collapse
|
22
|
Salih H, Karaynir A, Yalcin M, Oryasin E, Holyavkin C, Basbulbul G, Bozdogan B. Metagenomic analysis of wastewater phageome from a University Hospital in Turkey. Arch Microbiol 2022; 204:353. [DOI: 10.1007/s00203-022-02962-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022]
|
23
|
Ballesté E, Blanch AR, Muniesa M, García-Aljaro C, Rodríguez-Rubio L, Martín-Díaz J, Pascual-Benito M, Jofre J. Bacteriophages in sewage: abundance, roles, and applications. FEMS MICROBES 2022; 3:xtac009. [PMID: 37332509 PMCID: PMC10117732 DOI: 10.1093/femsmc/xtac009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 08/25/2023] Open
Abstract
The raw sewage that flows through sewage systems contains a complex microbial community whose main source is the human gut microbiome, with bacteriophages being as abundant as bacteria or even more so. Phages that infect common strains of the human gut bacteriome and transient bacterial pathogens have been isolated in raw sewage, as have other phages corresponding to non-sewage inputs. Although human gut phages do not seem to replicate during their transit through the sewers, they predominate at the entrance of wastewater treatment plants, inside which the dominant populations of bacteria and phages undergo a swift change. The sheer abundance of phages in the sewage virome prompts several questions, some of which are addressed in this review. There is growing concern about their potential role in the horizontal transfer of genes, including those related with bacterial pathogenicity and antibiotic resistance. On the other hand, some phages that infect human gut bacteria are being used as indicators of fecal/viral water pollution and as source tracking markers and have been introduced in water quality legislation. Other potential applications of enteric phages to control bacterial pathogens in sewage or undesirable bacteria that impede the efficacy of wastewater treatments, including biofilm formation on membranes, are still being researched.
Collapse
Affiliation(s)
- Elisenda Ballesté
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Anicet R Blanch
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Julia Martín-Díaz
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Miriam Pascual-Benito
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - J Jofre
- Reial Academia de Ciències i Arts de Barcelona, La Rambla, 115, 08002 Barcelona, Spain
| |
Collapse
|
24
|
Sherrill-Mix S, Yang M, Aldrovandi GM, Brenchley JM, Bushman FD, Collman RG, Dandekar S, Klatt NR, Lagenaur LA, Landay AL, Paredes R, Tachedjian G, Turpin JA, Serrano-Villar S, Lozupone CA, Ghosh M. A Summary of the Sixth International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. AIDS Res Hum Retroviruses 2022; 38:173-180. [PMID: 34969255 PMCID: PMC9009592 DOI: 10.1089/aid.2021.0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In October of 2020, researchers from around the world met online for the sixth annual International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. New research was presented on the roles of the microbiome on immune response and HIV transmission and pathogenesis and the potential for alterations in the microbiome to decrease transmission and affect comorbidities. This article presents a summary of the findings reported.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Scott Sherrill-Mix, Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 424 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michelle Yang
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| | - Grace M. Aldrovandi
- Department of Pediatrics, University of California, Los Angeles, California, USA
| | | | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Nichole R. Klatt
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Alan L. Landay
- Division of Gerontology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Roger Paredes
- Institut de Recerca de la SIDA IrsiCaixa i Unitat VIH, Universitat Autònoma de Barcelona, Universitat de Vic, Catalonia, Spain
| | | | - Jim A. Turpin
- Divison of AIDS, NIAID, NIH, Bethesda, Maryland, USA
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | | | - Mimi Ghosh
- Department of Epidemiology, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
25
|
Fu S, Yang Q, Sheng Y, Wang Q, Wu J, Qiu Z, Lan R, Wang Y, Liu Y. Metagenomics combined with comprehensive validation as a public health risk assessment tool for urban and agricultural run-off. WATER RESEARCH 2022; 209:117941. [PMID: 34920315 DOI: 10.1016/j.watres.2021.117941] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/13/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Early detection of emerging and life-threatening pathogens circulating in complex environments is urgently required to combat infectious diseases. This study proposed a public health risk assessment workflow with three stages, pathogen screening, pathogen genotyping, and risk assessment. In stage one, pathogens were screened with metagenomic sequencing, microfluidic chip, and qPCR. In stage two, pathogens were isolated and genotyped with multi-locus sequence typing (MLST) or conventional PCR. Finally, virulence genes from metagenomic data were assessed for pathogenicity. Two regions (Donggang and Zhanjiang) with potential public health concerns were selected for evaluation, each of which comprised of one urban and one farming wastewater sampling location. Overall, metagenomic sequencing reflected the variation in the relative abundance of medically important bacteria. Over 90 bacterial pathogens were monitored in the metagenomic dataset, of which 56 species harbored virulence genes. In Donggang, a pathogenic Acinetobacter sp. reached high abundances in 2018 and 2020, whereas all pathogenic Vibrio spp. peaked in October 2019. In Zhanjiang, A. baumanni, and other Enterobacteriaceae species were abundantly present in 2019 and 2020, whereas Aeromonas and Vibrio spp. peaked in November-2017. Forty species were subsequently isolated and subtyped by MLST, half of which were prevalent genotypes in clinical data. Additionally, we identified the African Swine Fever Virus (ASFV) in water samples collected in 2017, ahead of the first reported ASFV outbreak in 2018 in China. RNA viruses like Hepatitis A virus (HAV) and Enterovirus 71 (EV71) were also detected, with concentrations peaking in April 2020 and April 2018, respectively. The dynamics of HAV and EV71 were consistent with local epidemic trends. Finally, based on the virulence gene profiles, our study identified the risk level in wastewater of two cities. This workflow illustrates the potential for an early warning of local epidemics, which helps to prioritize the preparedness for specific pathogens locally.
Collapse
Affiliation(s)
- Songzhe Fu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China.
| | - Qian Yang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, Gent 9000, Belgium
| | - Yijian Sheng
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qingyao Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China
| | - Junmin Wu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, China; Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian 116023, China
| | - Zhiguang Qiu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Yongjie Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 150791, China
| |
Collapse
|
26
|
Adriaenssens EM, Farkas K, McDonald JE, Jones DL, Allison HE, McCarthy AJ. Tracing the fate of wastewater viruses reveals catchment-scale virome diversity and connectivity. WATER RESEARCH 2021; 203:117568. [PMID: 34450465 DOI: 10.1016/j.watres.2021.117568] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The discharge of wastewater-derived viruses in aquatic environments impacts catchment-scale virome composition. To explore this, we used viromic analysis of RNA and DNA virus-like particles to holistically track virus communities entering and leaving wastewater treatment plants and the connecting river catchment system and estuary. We reconstructed >40 000 partial viral genomes into 10 149 species-level groups, dominated by dsDNA and (+)ssRNA bacteriophages (Caudoviricetes and Leviviricetes) and a small number of genomes that could pose a risk to human health. We found substantial viral diversity and geographically distinct virus communities associated with different wastewater treatment plants. River and estuarine water bodies harboured more diverse viral communities in downstream locations, influenced by tidal movement and proximity to wastewater treatment plants. Shellfish and beach sand were enriched in viral communities when compared with the surrounding water, acting as entrapment matrices for virus particles. Extensive phylogenetic analyses of environmental-derived and reference sequences showed the presence of human-associated sapovirus GII in all sample types, multiple rotavirus A strains in wastewater and a diverse set of picorna-like viruses associated with shellfish. We conclude that wastewater-derived viral genetic material is commonly deposited in the environment and can be traced throughout the freshwater-marine continuum of the river catchment, where it is influenced by local geography, weather events and tidal effects. Our data illustrate the utility of viromic analyses for wastewater- and environment-based ecology and epidemiology, and we present a conceptual model for the circulation of all types of viruses in a freshwater catchment.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK; Quadram Institute Bioscience, Norwich, NR4 7UQ, UK.
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK; School of Ocean Sciences, Bangor University, Bangor, LL59 5AB, UK
| | - James E McDonald
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Heather E Allison
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Alan J McCarthy
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
27
|
Zhang YY, Chen Y, Wei X, Cui J. Viromes in marine ecosystems reveal remarkable invertebrate RNA virus diversity. SCIENCE CHINA-LIFE SCIENCES 2021; 65:426-437. [PMID: 34156600 DOI: 10.1007/s11427-020-1936-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Little is known about ocean viromes and the ecological drivers of the evolution of aquatic RNA viruses. This study employed a meta-transcriptomic approach to characterize the viromes of 58 marine invertebrate species across three seas. This revealed the presence of 315 newly identified RNA viruses in nine viral families or orders (Durnavirales, Totiviridae, Bunyavirales, Hantaviridae, Picornavirales, Flaviviridae, Hepelivirales, Solemoviridae, and Tombusviridae), with most of them being sufficiently divergent to the already documented viruses. Notably, this study revealed three marine invertebrate hantaviruses that are rooted to vertebrate hantaviruses, further supporting that hantaviruses may have a marine origin. We have also found evidence for possible host sharing and switch events during virus evolution. Overall, we have revealed the hidden diversity of marine invertebrate RNA viruses.
Collapse
Affiliation(s)
- Yu-Yi Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yicong Chen
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaoman Wei
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, 200031, China. .,Laboatory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
28
|
Yang Q, Rivailler P, Zhu S, Yan D, Xie N, Tang H, Zhang Y, Xu W. Detection of multiple viruses potentially infecting humans in sewage water from Xinjiang Uygur Autonomous Region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142322. [PMID: 33254887 DOI: 10.1016/j.scitotenv.2020.142322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
The progress of sequencing technologies has facilitated metagenomics projects on environmental samples like sewage water. The present study concerned the analysis of sewage samples collected from 3 locations in Xinjiang Uygur Autonomous Region in China. The analysis focused on RNA viruses known to infect humans and identified viruses from 10 families. The proportion of human virus species in the sewage samples was relatively stable with an average of 17%. Thirty virus species known to infect humans were identified and they belonged to 6 families: Picornaviridae (12), Astroviridae (11), Reoviridae (3), Caliciviridae (2), Papillomaviridae (1) and Picobirnaviridae (1). A total of 16 full-length genomes were generated from Astroviridae, Picornaviridae (Salivirus and Kobuvirus) and Picobirnaviridae. Astroviruses appeared to be the most present viruses and were detected in all sewage samples. Analyzing the virome of sewage samples should help to monitor any potential risks to public health.
Collapse
Affiliation(s)
- Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Pierre Rivailler
- WHO WPRO Regional Reference Measles/Rubella Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Na Xie
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Jianquanyi Road, Urumqi 830002, China
| | - Haishu Tang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Jianquanyi Road, Urumqi 830002, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Reference Measles/Rubella Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
29
|
Analysis of Microbial Communities and Pathogen Detection in Domestic Sewage Using Metagenomic Sequencing. DIVERSITY 2020. [DOI: 10.3390/d13010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Wastewater contains diverse microbes, and regular microbiological screening at wastewater treatment plants is essential for monitoring the wastewater treatment and protecting environmental health. In this study, a metagenomic approach was used to characterize the microbial communities in the influent and effluent of a conventional domestic sewage treatment plant in the metropolitan city of Jeddah. Bacteria were the prevalent type of microbe in both the influent and effluent, whereas archaea and viruses were each detected at <1% abundance. Greater diversity was observed in effluent bacterial populations compared with influent, despite containing similar major taxa. These taxa consisted primarily of Proteobacteria, followed by Bacteroidetes and Firmicutes. Metagenomic analysis provided broad profiles of 87 pathogenic/opportunistic bacteria belonging to 47 distinct genera in the domestic sewage samples, with most having <1% abundance. The archaea community included 20 methanogenic genera. The virus-associated sequences were classified mainly into the families Myoviridae, Siphoviridae, and Podoviridae. Genes related to resistance to antibiotics and toxic compounds, gram-negative cell wall components, and flagellar motility in prokaryotes identified in metagenomes from both types of samples. This study provides a comprehensive understanding of microbial communities in influent and effluent samples of a conventional domestic sewage treatment plant and suggests that metagenomic analysis is a feasible approach for microbiological monitoring of wastewater treatment.
Collapse
|
30
|
Profile of the Spatial Distribution Patterns of the Human and Bacteriophage Virome in a Wastewater Treatment Plant Located in the South of Spain. WATER 2020. [DOI: 10.3390/w12082316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In wastewater treatment plants, most microbial characterization has focused on bacterial, archaeal, and fungal populations. Due to the difficult isolation, quantification, and identification of viruses, only a limited number of virome studies associated with wastewater treatment plants have been carried out. However, the virus populations play an important role in the microbial dynamics in wastewater treatment systems and the biosafety of effluents. In this work, the viral members present in influent wastewater, mixed liquor (aerobic bioreactor), excess sludge, and effluent water of a conventional activated sludge system for the treatment of urban wastewater were identified. Viral members were observed by transmission electron microscopy and studied through next-generation sequencing studies. The results showed the dominance of bacteriophages in the viral community in all samples, with the dominant viral phylotype classified as Escherichia coli O157 typing phage 7. Moreover, different human viruses, such as Cynomolgus cytomegalovirus and Gammaherpesvirus, were also detected.
Collapse
|