1
|
Huang R, Zhou G, Cai J, Cao C, Zhu Z, Wu Q, Zhang F, Ding Y. Maternal consumption of urbanized diet compromises early-life health in association with gut microbiota. Gut Microbes 2025; 17:2483783. [PMID: 40176259 PMCID: PMC11988223 DOI: 10.1080/19490976.2025.2483783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025] Open
Abstract
Urbanization has significantly transformed dietary habits worldwide, contributing to a globally increased burden of non-communicable diseases and altered gut microbiota landscape. However, it is often overlooked that the adverse effects of these dietary changes can be transmitted from the mother to offspring during early developmental stages, subsequently influencing the predisposition to various diseases later in life. This review aims to delineate the detrimental effects of maternal urban-lifestyle diet (urbanized diet) on early-life health and gut microbiota assembly, provide mechanistic insights on how urbanized diet mediates mother-to-offspring transfer of bioactive substances in both intrauterine and extrauterine and thus affects fetal and neonatal development. Moreover, we also further propose a framework for developing microbiome-targeted precision nutrition and diet strategies specifically for pregnant and lactating women. The establishment of such knowledge can help develop proactive preventive measures from the beginning of life, ultimately reducing the long-term risk of disease and improving public health outcomes.
Collapse
Affiliation(s)
- Rong Huang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guicheng Zhou
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jie Cai
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cha Cao
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Markus MRP, Weiss FU, Hertel J, Weiss S, Rühlemann M, Bang C, Franke A, Völker U, Homuth G, Kocher T, Völzke H, Lerch MM, Ittermann T, Felix SB, Ewert R, Bahls M, Dörr M, Frost F. Lower cardiorespiratory fitness is associated with an altered gut microbiome. The Study of Health in Pomerania (SHIP). Sci Rep 2025; 15:5171. [PMID: 39939328 PMCID: PMC11822121 DOI: 10.1038/s41598-025-88415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
Sedentarism is characterized by low levels of physical activity, a risk factor for obesity and cardio-metabolic diseases. It can also adversely affect the composition and diversity of the gut microbiome which may result in harmful consequences for human health. While cardiorespiratory fitness (CRF) is inversely and independently associated with cardiovascular risk factors and diseases and all-cause mortality, the relationship between low CRF and the gut microbiome is not well known. A total of 3,616 individuals from two independent population-based cohorts of the Study of Health in Pomerania (SHIP-START and SHIP-TREND) performed standardized, symptom-limited cardiopulmonary exercise testing (CPET) and had faecal samples collected to determine gut microbiota profiles (16S rRNA gene sequencing). We analysed cross-sectional associations of CRF with the gut microbiome composition controlling for confounding factors. Lower CRF was associated with reduced microbial diversity, loss of beneficial short-chain fatty acid producing bacteria (i.e. Butyricoccus, Coprococcus, unclassified Ruminococcaceae or Lachnospiraceae) and an increase in opportunistic pathogens such as Escherichia/Shigella, or Citrobacter. Decreased cardiorespiratory performance was associated with a gut microbiota pattern that has been previously related to a proinflammatory state. These associations were independent of body weight or glycemic control.
Collapse
Affiliation(s)
- Marcello Ricardo Paulista Markus
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner site Greifswald, Greifswald, Germany.
- German Center for Diabetes Research (DZD), Partner site Greifswald, Greifswald, Germany.
| | - Frank-Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Johannes Hertel
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Unit of Periodontology, Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner site Greifswald, Greifswald, Germany
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Till Ittermann
- German Centre for Cardiovascular Research (DZHK), Partner site Greifswald, Greifswald, Germany
- Department of Study of Health in Pomerania/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Burkhard Felix
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Greifswald, Greifswald, Germany
| | - Ralf Ewert
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Martin Bahls
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B, Cardiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Greifswald, Greifswald, Germany
| | - Fabian Frost
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Wathanavasin W, Cheungpasitporn W, Thongprayoon C, Fülöp T. Effects of Dietary Fiber Supplementation on Modulating Uremic Toxins and Inflammation in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Toxins (Basel) 2025; 17:57. [PMID: 39998074 PMCID: PMC11860371 DOI: 10.3390/toxins17020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Emerging evidence supports the beneficial effects of dietary fiber supplementation in alleviating gut dysbiosis, which leads to a reduction in uremic toxins and inflammatory markers in chronic kidney disease (CKD) patients. However, current evidence-based renal nutrition guidelines do not provide recommendations regarding dietary fiber intake. We performed a systematic review and meta-analysis to investigate and highlight the effects of dietary fiber supplementation on modulating uremic toxins and inflammatory markers in individuals with CKD, with or without dialysis. The eligible randomized controlled trials (RCTs) were identified from PubMed, Scopus, and Cochrane Central Register of Controlled trials until 27 November 2024. The results were synthesized using a random-effects model and presented as standardized mean differences (SMDs) with a 95% confidence interval (CI). A total of 21 studies with 700 patients were included. When compared with the control group, dietary fiber supplementation ranging from 6 to 50 g/day, for typically more than 4 weeks, could significantly reduce the levels of serum uremic toxins, including p-cresyl sulfate, indoxyl sulfate, and blood urea nitrogen (SMD -0.22, -0.34, -0.25, respectively, with p-values < 0.05), as well as biomarkers of inflammation, including interleukin-6 and tumor necrosis factor alpha (SMD -0.44, -0.34, respectively, with p-values < 0.05). These beneficial effects were consistent across different types of fibers and CKD status (with or without dialysis). However, no significant reduction in serum trimethylamine N-oxide, uric acid, and high-sensitivity C-reactive protein levels was observed with dietary fiber intervention. This study would pave the way for prioritizing dietary quality, particularly a fiber-rich diet, beyond the traditional focus on the quantities of protein, energy, and electrolyte restrictions among individuals with CKD.
Collapse
Affiliation(s)
- Wannasit Wathanavasin
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
- Nephrology Unit, Department of Medicine, Charoenkrung Pracharak Hospital, Bangkok Metropolitan Administration, Bangkok 10120, Thailand
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA; (W.W.); (W.C.); (C.T.)
| | - Tibor Fülöp
- Medicine Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
4
|
Yin Z, Fu L, Wang Y, Tai S. Impact of gut microbiota on cardiac aging. Arch Gerontol Geriatr 2025; 128:105639. [PMID: 39312851 DOI: 10.1016/j.archger.2024.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Recent research has suggested imbalances in gut microbiota composition as contributors to cardiac aging. An individual's physical condition, along with lifestyle-associated factors, including diet and medication, are significant determinants of gut microbiota composition. This review discusses evidence of bidirectional associations between aging and gut microbiota, identifying gut microbiota-derived metabolites as potential regulators of cardiac aging. It summarizes the effects of gut microbiota on cardiac aging diseases, including cardiac hypertrophy and fibrosis, heart failure, and atrial fibrillation. Furthermore, this review discusses the potential anti-aging effects of modifying gut microbiota composition through dietary and pharmacological interventions. Lastly, it underscores critical knowledge gaps and outlines future research directions. Given the current limited understanding of the direct relationship between gut microbiota and cardiac aging, there is an urgent need for preclinical and clinical investigations into the mechanistic interactions between gut microbiota and cardiac aging. Such endeavors hold promise for shedding light on the pathophysiology of cardiac aging and uncovering new therapeutic targets for cardiac aging diseases.
Collapse
Affiliation(s)
- Zhiyi Yin
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Liyao Fu
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Shi Tai
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
5
|
Rivera K, Gonzalez L, Bravo L, Manjarres L, Andia ME. The Gut-Heart Axis: Molecular Perspectives and Implications for Myocardial Infarction. Int J Mol Sci 2024; 25:12465. [PMID: 39596530 PMCID: PMC11595032 DOI: 10.3390/ijms252212465] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Myocardial infarction (MI) remains the leading cause of death globally, imposing a significant burden on healthcare systems and patients. The gut-heart axis, a bidirectional network connecting gut health to cardiovascular outcomes, has recently emerged as a critical factor in MI pathophysiology. Disruptions in this axis, including gut dysbiosis and compromised intestinal barrier integrity, lead to systemic inflammation driven by gut-derived metabolites like lipopolysaccharides (LPSs) and trimethylamine N-oxide (TMAO), both of which exacerbate MI progression. In contrast, metabolites such as short-chain fatty acids (SCFAs) from a balanced microbiota exhibit protective effects against cardiac damage. This review examines the molecular mediators of the gut-heart axis, considering the role of factors like sex-specific hormones, aging, diet, physical activity, and alcohol consumption on gut health and MI outcomes. Additionally, we highlight therapeutic approaches, including dietary interventions, personalized probiotics, and exercise regimens. Addressing the gut-heart axis holds promise for reducing MI risk and improving recovery, positioning it as a novel target in cardiovascular therapy.
Collapse
Affiliation(s)
- Katherine Rivera
- Doctoral Program in Medical Sciences, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 8331010, Chile;
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Leticia Gonzalez
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Liena Bravo
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Laura Manjarres
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| | - Marcelo E. Andia
- Biomedical Imaging Center, School of Medicine, Pontificia Universidad Católica de Chile, Santiago de Chile 7820436, Chile
- Millennium Institute for Intelligent Healthcare Engineering iHEALTH, Santiago de Chile 7820436, Chile
| |
Collapse
|
6
|
Sun Y, Lin X, Liu Z, Hu L, Sun P, Shen G, Fan F, Zhang Y, Li J. Association between plasma trimethylamine N-oxide and coronary heart disease: new insights on sex and age differences. Front Cardiovasc Med 2024; 11:1397023. [PMID: 39434851 PMCID: PMC11491342 DOI: 10.3389/fcvm.2024.1397023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Aim Elevated plasma trimethylamine N-oxide (TMAO) is related to atherosclerosis. Whether the relationship of TMAO and coronary heart disease (CHD) is influenced by sex or age is uncertain. We aim to explore the sex and age differences in the relationship between plasma TMAO and CHD risk and severity. Methods A case-control study was conducted in patients undergoing elective coronary angiography. Matched by sex, age (±2 years), and operation date (±180 days), a total of 429 CHD case-control pairs were included. Plasma TMAO was quantified using liquid chromatography-tandem mass spectrometry. Logistic regression analyses were performed to evaluate the association between plasma TMAO and CHD risk and severity. Results The overall median (interquartile range) plasma TMAO level was 0.11 (0.06-0.18) μg/ml. After stratification by sex and age, and adjustment for common CHD risk factors, the association between TMAO and CHD risk was significant in the older (≥65 years) male subgroup [odds ratios (OR) = 1.57, 95% confidence interval (CI): 1.09-2.28, P = 0.016], but not in other sex-age subgroups (all P > 0.05). The relationship of plasma TMAO and CHD risk was modified by age (adjusted P interaction = 0.001) in male individuals. Plasma TMAO was also associated with a higher risk of multi-vessel disease in male patients with CHD (OR = 1.65, 95% CI: 1.18-2.32, P = 0.004), but not in females. Conclusions Plasma TMAO is significantly positively associated with the risk and severity of CHD in Chinese men. Age has an interactive effect on the relationship between plasma TMAO and CHD risk in men. Our findings warrant further investigation.
Collapse
Affiliation(s)
- Yangyang Sun
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xipeng Lin
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Zhihao Liu
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Lihua Hu
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Pengfei Sun
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Geng Shen
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
7
|
Livzan MA, Bikbavova GR, Lisyutenko NS, Romanyuk AE, Drapkina OM. Cardiovascular Risk in Patients with Inflammatory Bowel Diseases-The Role of Endothelial Dysfunction. Diagnostics (Basel) 2024; 14:1722. [PMID: 39202210 PMCID: PMC11353271 DOI: 10.3390/diagnostics14161722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is associated with an increased risk of cardiovascular disease (CVD). Cardiovascular pathology in people with IBD has not been well studied to date, and a direct link between cardiovascular events and IBD has not been established. The mechanisms underlying this association include the parallel and dynamic interaction of inflammation, modulation of the composition of the gut microbiota, endothelial dysfunction, thrombogenicity, and increased endothelial and epithelial permeability. Endothelial dysfunction is a common aspect of the pathogenesis of IBD and atherosclerotic CVD and can be considered one of the most important factors leading to the development and progression of cardiovascular pathology in patients with IBD. The purpose of this literature review is to describe the mechanisms underlying the development of endothelial dysfunction and disorders of the structure and function of the gut-vascular barrier in the pathogenesis of the cardiovascular manifestation of IBD.
Collapse
Affiliation(s)
- Maria A. Livzan
- Department of Faculty Therapy, Omsk State Medical University, 644099 Omsk, Russia;
| | - Galiya R. Bikbavova
- Department of Internal Medicine and Endocrinology, Omsk State Medical University, 644099 Omsk, Russia;
| | - Natalya S. Lisyutenko
- Department of Internal Medicine and Endocrinology, Omsk State Medical University, 644099 Omsk, Russia;
| | - Alisa E. Romanyuk
- Faculty of Medicine, Omsk State Medical University, 644099 Omsk, Russia;
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia;
| |
Collapse
|
8
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
9
|
Huang Y, Wu Y, Zhang Y, Bai H, Peng R, Ruan W, Zhang Q, Cai E, Ma M, Zhao Y, Lu Y, Zheng L. Dynamic Changes in Gut Microbiota-Derived Metabolite Trimethylamine-N-Oxide and Risk of Type 2 Diabetes Mellitus: Potential for Dietary Changes in Diabetes Prevention. Nutrients 2024; 16:1711. [PMID: 38892643 PMCID: PMC11174887 DOI: 10.3390/nu16111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND A gut-microbial metabolite, trimethylamine N-oxide (TMAO), has been associated with type 2 diabetes mellitus (T2DM). Few previous prospective studies have addressed associations between the changes in TMAO and T2DM incidence. METHODS Data were derived from a longitudinal cohort conducted from 2019 to 2021 in rural areas of Fuxin County, Liaoning Province, China, and 1515 diabetes-free participants aged above 35 years were included. The concentrations of serum TMAO and its precursors were measured at two time points, namely in 2019 and 2021. TMAO and TMAO changes (ΔTMAO) were separately tested in a logistic regression model. For further examination, the odds ratios (ORs) for T2DM were calculated according to a combination of TMAO levels and ΔTMAO levels. RESULTS During a median follow-up of 1.85 years, 81 incident cases of T2DM (5.35%) were identified. Baseline TMAO levels exhibited a nonlinear relationship, first decreasing and then increasing, and only at the highest quartile was it associated with the risk of T2DM. The OR for T2DM in the highest quartile of serum TMAO was 3.35 (95%CI: 1.55-7.26, p = 0.002), compared with the lowest quartile. As for its precursors, only choline level was associated with T2DM risk and the OR for T2DM in the Q3 and Q4 of serum choline was 3.37 (95%CI: 1.41-8.05, p = 0.006) and 4.72 (95%CI: 1.47-15.13, p = 0.009), respectively. When considering both baseline TMAO levels and ΔTMAO over time, participants with sustained high TMAO levels demonstrated a significantly increased risk of T2DM, with a multivariable-adjusted OR of 8.68 (95%CI: 1.97, 38.34). CONCLUSION Both initial serum TMAO levels and long-term serum TMAO changes were collectively and significantly associated with the occurrence of subsequent T2DM events. Interventions aimed at normalizing TMAO levels, such as adopting a healthy dietary pattern, may be particularly beneficial in T2DM prevention.
Collapse
Affiliation(s)
- Yuliang Huang
- Department of Acute Communicable Diseases Control and Prevention, Huangpu District Center for Disease Control and Prevention, Shanghai 200023, China;
| | - Yani Wu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.); (H.B.); (R.P.)
| | - Yao Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, China;
| | - He Bai
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.); (H.B.); (R.P.)
| | - Ruiheng Peng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.); (H.B.); (R.P.)
| | - Wenli Ruan
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China; (W.R.); (E.C.)
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;
| | - Enmao Cai
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China; (W.R.); (E.C.)
| | - Mingfeng Ma
- Department of Cardiovascular Medicine, Fenyang Hospital, Shanxi Medical University, Fenyang 032200, China;
| | - Yueyang Zhao
- Library, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ying Lu
- Department of Physical and Chemical, Changning District Center for Disease Control and Prevention, Shanghai 200051, China; (W.R.); (E.C.)
| | - Liqiang Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.W.); (H.B.); (R.P.)
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China;
| |
Collapse
|
10
|
Bijla M, Saini SK, Pathak AK, Bharadwaj KP, Sukhavasi K, Patil A, Saini D, Yadav R, Singh S, Leeuwenburgh C, Kumar P. Microbiome interactions with different risk factors in development of myocardial infarction. Exp Gerontol 2024; 189:112409. [PMID: 38522483 DOI: 10.1016/j.exger.2024.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Among all non-communicable diseases, Cardiovascular Diseases (CVDs) stand as the leading global cause of mortality. Within this spectrum, Myocardial Infarction (MI) strikingly accounts for over 15 % of all deaths. The intricate web of risk factors for MI, comprising family history, tobacco use, oral health, hypertension, nutritional pattern, and microbial infections, is firmly influenced by the human gut and oral microbiota, their diversity, richness, and dysbiosis, along with their respective metabolites. Host genetic factors, especially allelic variations in signaling and inflammatory markers, greatly affect the progression or severity of the disease. Despite the established significance of the human microbiome-nutrient-metabolite interplay in associations with CVDs, the unexplored terrain of the gut-heart-oral axis has risen as a critical knowledge gap. Moreover, the pivotal role of the microbiome and the complex interplay with host genetics, compounded by age-related changes, emerges as an area of vital importance in the development of MI. In addition, a distinctive disease susceptibility and severity influenced by gender-based or ancestral differences, adds a crucial insights to the association with increased mortality. Here, we aimed to provide an overview on interactions of microbiome (oral and gut) with major risk factors (tobacco use, alcohol consumption, diet, hypertension host genetics, gender, and aging) in the development of MI and therapeutic regulation.
Collapse
Affiliation(s)
- Manisha Bijla
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Sunil Kumar Saini
- Department of Zoology, Swami Shraddhanand College, Delhi University, India
| | - Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital & Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Ayurshi Patil
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Diksha Saini
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Rakesh Yadav
- Department of Cardiology, AIIMS, New Delhi, India
| | - Shalini Singh
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | | | - Pramod Kumar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
11
|
Abstract
The composition of the human gut microbiome has been observed to change over the course of an individual's life. From birth, it is shaped by mode of delivery, diet, environmental exposures, geographic location, exposures to medications, and by aging itself. Here, we present a narrative review of the gut microbiome across the lifespan with a focus on its impacts on aging and age-related diseases in humans. We will describe how it is shaped, and features of the gut microbiome that have been associated with diseases at different phases of life and how this can adversely affect healthy aging. Across the lifespan, and especially in old age, a diverse microbiome that includes organisms suspected to produce anti-inflammatory metabolites such as short-chain fatty acids, has been reported to be associated with healthy aging. These findings have been remarkably consistent across geographic regions of the world suggesting that they could be universal features of healthy aging across all cultures and genetic backgrounds. Exactly how these features of the microbiome affect biologic processes associated with aging thus promoting healthy aging will be crucial to targeting the gut microbiome for interventions that will support health and longevity.
Collapse
Affiliation(s)
- Evan Bradley
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| | - John Haran
- UMass Chan Medical School, Department of Emergency Medicine and Department of Microbiology and Physiologic Systems, Program in Microbiome Dynamics, Worcester, MA, USA
| |
Collapse
|
12
|
Kortesniemi M, Noerman S, Kårlund A, Raita J, Meuronen T, Koistinen V, Landberg R, Hanhineva K. Nutritional metabolomics: Recent developments and future needs. Curr Opin Chem Biol 2023; 77:102400. [PMID: 37804582 DOI: 10.1016/j.cbpa.2023.102400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Metabolomics has rapidly been adopted as one of the key methods in nutrition research. This review focuses on the recent developments and updates in the field, including the analytical methodologies that encompass improved instrument sensitivity, sampling techniques and data integration (multiomics). Metabolomics has advanced the discovery and validation of dietary biomarkers and their implementation in health research. Metabolomics has come to play an important role in the understanding of the role of small molecules resulting from the diet-microbiota interactions when gut microbiota research has shifted towards improving the understanding of the activity and functionality of gut microbiota rather than composition alone. Currently, metabolomics plays an emerging role in precision nutrition and the recent developments therein are discussed.
Collapse
Affiliation(s)
- Maaria Kortesniemi
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland.
| | - Stefania Noerman
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Anna Kårlund
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Jasmin Raita
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Topi Meuronen
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Ville Koistinen
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Kati Hanhineva
- Food Sciences Unit, Department of Life Technologies, University of Turku, FI-20014 Turun yliopisto, Finland; Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
13
|
Liu S, He Y, Zhang Y, Zhang Z, Huang K, Deng L, Liao B, Zhong Y, Feng J. Targeting gut microbiota in aging-related cardiovascular dysfunction: focus on the mechanisms. Gut Microbes 2023; 15:2290331. [PMID: 38073096 PMCID: PMC10730151 DOI: 10.1080/19490976.2023.2290331] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The global population is aging and age-related cardiovascular disease is increasing. Even after controlling for cardiovascular risk factors, readmission and mortality rates remain high. In recent years, more and more in-depth studies have found that the composition of the gut microbiota and its metabolites, such as trimethylamine N-oxide (TMAO), bile acids (BAs), and short-chain fatty acids (SCFAs), affect the occurrence and development of age-related cardiovascular diseases through a variety of molecular pathways, providing a new target for therapy. In this review, we discuss the relationship between the gut microbiota and age-related cardiovascular diseases, and propose that the gut microbiota could be a new therapeutic target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yali Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhaolun Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
14
|
Gou W, Miao Z, Deng K, Zheng JS. Nutri-microbiome epidemiology, an emerging field to disentangle the interplay between nutrition and microbiome for human health. Protein Cell 2023; 14:787-806. [PMID: 37099800 PMCID: PMC10636640 DOI: 10.1093/procel/pwad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
Diet and nutrition have a substantial impact on the human microbiome, and interact with the microbiome, especially gut microbiome, to modulate various diseases and health status. Microbiome research has also guided the nutrition field to a more integrative direction, becoming an essential component of the rising area of precision nutrition. In this review, we provide a broad insight into the interplay among diet, nutrition, microbiome, and microbial metabolites for their roles in the human health. Among the microbiome epidemiological studies regarding the associations of diet and nutrition with microbiome and its derived metabolites, we summarize those most reliable findings and highlight evidence for the relationships between diet and disease-associated microbiome and its functional readout. Then, the latest advances of the microbiome-based precision nutrition research and multidisciplinary integration are described. Finally, we discuss several outstanding challenges and opportunities in the field of nutri-microbiome epidemiology.
Collapse
Affiliation(s)
- Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kui Deng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
15
|
Vital M, Heinrich‐Sanchez Y. A small, polyphyletic group of Firmicutes synthesizes trimethylamine from l-carnitine. MLIFE 2023; 2:267-271. [PMID: 38817809 PMCID: PMC10989800 DOI: 10.1002/mlf2.12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/30/2023] [Accepted: 07/16/2023] [Indexed: 06/01/2024]
Abstract
Gut microbiota-derived trimethylamine (TMA) is associated with cardiometabolic disorders and exemplifies a microbial involvement in the etiology of emerging, noncommunicable diseases, the leading causes of death worldwide. Three biochemical pathways taking dietary compounds as intake have been described with distinct taxa involved that are all present at low relative abundances. A recently discovered pathway is now considered to be the main route for TMA synthesis from l-carnitine involving γ-butyrobetaine as an intermediate product. By comprehensive (meta) genomic screening of publicly available data, namely, genomes of the UHGG catalog (n > 200,000) and 10 metagenomic (transcriptomic) data sets, we revealed bacteria synthesizing TMA via this pathway and specified their ecophysiology. Results will contribute to stratification of individuals based on their gut microbiota's potential to synthesize TMA and might aid in the development of strategies restricting TMA formation.
Collapse
Affiliation(s)
- Marius Vital
- Hannover Medical SchoolInstitute for Medical Microbiology and Hospital EpidemiologyHannoverGermany
| | - Ylenia Heinrich‐Sanchez
- Hannover Medical SchoolInstitute for Medical Microbiology and Hospital EpidemiologyHannoverGermany
| |
Collapse
|
16
|
Battillo DJ, Malin SK. Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity. Nutrients 2023; 15:1455. [PMID: 36986183 PMCID: PMC10058428 DOI: 10.3390/nu15061455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is linked to cardiovascular disease (CVD) through partly altered central hemodynamics. We sought to examine if a low-calorie diet plus interval exercise (LCD+INT) intervention reduces TMAO more than a low-calorie diet (LCD) program alone in relation to hemodynamics, prior to clinically meaningful weight loss. Women with obesity were randomized to 2 weeks of LCD (n = 12, ~1200 kcal/d) or LCD+INT (n = 11; 60 min/d, 3 min at 90% and 50% HRpeak, respectively). A 180 min 75 g OGTT was performed to assess fasting TMAO and precursors (carnitine, choline, betaine, and trimethylamine (TMA)) as well as insulin sensitivity. Pulse wave analysis (applanation tonometry) including augmentation index (AIx75), pulse pressure amplification (PPA), forward (Pf) and backward pressure (Pb) waveforms, and reflection magnitude (RM) at 0, 60, 120, and 180 min was also analyzed. LCD and LCD+INT comparably reduced weight (p < 0.01), fasting glucose (p = 0.05), insulin tAUC180min (p < 0.01), choline (p < 0.01), and Pf (p = 0.04). Only LCD+INT increased VO2peak (p = 0.03). Despite no overall treatment effect, a high baseline TMAO was associated with decreased TMAO (r = -0.45, p = 0.03). Reduced TMAO was related to increased fasting PPA (r = -0.48, p = 0.03). Lowered TMA and carnitine correlated with higher fasting RM (r = -0.64 and r = -0.59, both p < 0.01) and reduced 120 min Pf (both, r = 0.68, p < 0.01). Overall, treatments did not lower TMAO. Yet, people with high TMAO pre-treatment reduced TMAO after LCD, with and without INT, in relation to aortic waveforms.
Collapse
Affiliation(s)
- Daniel J. Battillo
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Steven K. Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Kinesiology, University of Virginia, Charlottesville, VA 22903, USA
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, NJ 08901, USA
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
17
|
Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen PB, Liu X, Wang YT, Cai XC, Tian JQ, Zhang MY, Xiao L, Kang XX. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne) 2023; 14:1085041. [PMID: 36824355 PMCID: PMC9941174 DOI: 10.3389/fendo.2023.1085041] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.
Collapse
Affiliation(s)
- Jing Zhen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng He
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai-Xiang Han
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - En-Hui Lv
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xun-Chao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jia-Qi Tian
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Ying Zhang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Xiao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Xing-Xing Kang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
18
|
Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montaño AR, Hernández-Ruiz P, Amezcua-Guerra LM, Amedei A, Aguirre-García MM. Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines 2023; 11:431. [PMID: 36830968 PMCID: PMC9952918 DOI: 10.3390/biomedicines11020431] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a metabolite produced by the gut microbiota and has been mainly associated with an increased incidence of cardiovascular diseases (CVDs) in humans. There are factors that affect one's TMAO level, such as diet, drugs, age, and hormones, among others. Gut dysbiosis in the host has been studied recently as a new approach to understanding chronic inflammatory and degenerative diseases, including cardiovascular diseases, metabolic diseases, and Alzheimer's disease. These disease types as well as COVID-19 are known to modulate host immunity. Diabetic and obese patients have been observed to have an increase in their level of TMAO, which has a direct correlation with CVDs. This metabolite is attributed to enhancing the inflammatory pathways through cholesterol and bile acid dysregulation, promoting foam cell formation. Additionally, TMAO activates the transcription factor NF-κB, which, in turn, triggers cytokine production. The result can be an exaggerated inflammatory response capable of inducing endoplasmic reticulum stress, which is responsible for various diseases. Due to the deleterious effects that this metabolite causes in its host, it is important to search for new therapeutic agents that allow a reduction in the TMAO levels of patients and that, thus, allow patients to be able to avoid a severe cardiovascular event. The present review discussed the synthesis of TMAO and its contribution to the pathogenesis of various inflammatory diseases.
Collapse
Affiliation(s)
- Luis A. Constantino-Jonapa
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Yoshua Espinoza-Palacios
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Alma R. Escalona-Montaño
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Paulina Hernández-Ruiz
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Luis M. Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| | - María M. Aguirre-García
- Unidad de Investigación UNAM-INC, División de Investigación, Facultad de Medicina, UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México 14080, Mexico
| |
Collapse
|
19
|
Dasinger JH, Joe B, Abais-Battad JM. Microbiota-associated mechanisms underlying sexual dimorphism in hypertension. MICROBIOTA AND HOST 2023; 1:e230016. [PMID: 38107627 PMCID: PMC10723812 DOI: 10.1530/mah-23-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Consistent research over the last 20 years has shown that there are clear sex differences in the pathogenesis of hypertension, the leading risk factor for the development of cardiovascular diseases. More recently, there is evidence in both humans and experimental animal models that causally implicates the gut microbiota in hypertension. It therefore follows that sex differences in the gut microbiota may mediate the extent of disease between sexes. This new field is rapidly changing and advancing, and the purpose of this review is to cover the most up-to-date evidence regarding the sexual dimorphism of the gut microbiota and its potential influence on the differential manifestation of hypertension in males versus females. Emphasis will be placed on the mechanisms thought to contribute to these sex differences in both the gut microbiota and hypertension, including sex steroid hormones, gut-derived metabolites, the immune system, and pregnancy.
Collapse
Affiliation(s)
| | - Bina Joe
- Department of Physiology and Pharmacology, University of
Toledo College of Medicine and Life Sciences
| | | |
Collapse
|
20
|
The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease. Int J Mol Sci 2023; 24:ijms24032399. [PMID: 36768722 PMCID: PMC9917289 DOI: 10.3390/ijms24032399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The gut microbiome plays a major role in human health, and gut microbial imbalance or dysbiosis is associated with disease development. Modulation in the gut microbiome can be used to treat or prevent different diseases. Gut dysbiosis increases with aging, and it has been associated with the impairment of gut barrier function leading to the leakage of harmful metabolites such as trimethylamine (TMA). TMA is a gut metabolite resulting from dietary amines that originate from animal-based foods. TMA enters the portal circulation and is oxidized by the hepatic enzyme into trimethylamine oxide (TMAO). Increased TMAO levels have been reported in elderly people. High TMAO levels are linked to peripheral artery disease (PAD), endothelial senescence, and vascular aging. Emerging evidence showed the beneficial role of probiotics and prebiotics in the management of several atherogenic risk factors through the remodeling of the gut microbiota, thus leading to a reduction in TMAO levels and atherosclerotic lesions. Despite the promising outcomes in different studies, the definite mechanisms of gut dysbiosis and microbiota-derived TMAO involved in atherosclerosis remain not fully understood. More studies are still required to focus on the molecular mechanisms and precise treatments targeting gut microbiota and leading to atheroprotective effects.
Collapse
|
21
|
Gut Microbial-Derived Metabolites as Immune Modulators of T Helper 17 and Regulatory T Cells. Int J Mol Sci 2023; 24:ijms24021806. [PMID: 36675320 PMCID: PMC9867388 DOI: 10.3390/ijms24021806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The gut microbiota and its derived metabolites greatly impact the host immune system, both innate and adaptive responses. Gut dysbiosis and altered levels of microbiota-derived metabolites have been described in several immune-related and immune-mediated diseases such as intestinal bowel disease, multiple sclerosis, or colorectal cancer. Gut microbial-derived metabolites are synthesized from dietary compounds ingested by the host or host-produced metabolites, and additionally, some bacterial products can be synthesized de novo. In this review, we focus on the two first metabolites families including short-chain fatty acids, indole metabolites, polyamines, choline-derived compounds, and secondary bile acids. They all have been described as immunoregulatory molecules that specifically affect the adaptive immune system and T helper 17 and regulatory T cells. We discuss the mechanisms of action and the consequences in health and diseases related to these gut microbial-derived metabolites. Finally, we propose that the exogenous administration of these molecules or other compounds that bind to their immunoregulatory receptors in a homologous manner could be considered therapeutic approaches.
Collapse
|
22
|
Associations of Diet with Urinary Trimethylamine-N-Oxide (TMAO) and Its Precursors among Free-Living 10-Year-Old Children: Data from SMBCS. Nutrients 2022; 14:nu14163419. [PMID: 36014922 PMCID: PMC9413070 DOI: 10.3390/nu14163419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), a diet-derived cometabolite linked to cardiometabolic disease, has been associated with elevated dietary status, particularly in people with kidney failure and adults with dietary modulations. However, the influence of the current diet on TMAO levels in free-living children has not been adequately described. This study was to explore associations of food compositions and dietary diversity with urinary TMAO and its precursor concentrations. Urinary TMAO and its precursor concentrations of 474 healthy children from the Sheyang Mini Birth Cohort were quantified by ultra-performance liquid chromatography−Q Exactive high-resolution mass spectrometer (UPLC-Q Exactive HRMS). Individual food compositions from 24 h dietary recall data were classified into 20 groups and diversity scores were calculated according to the guidelines of the Food and Agriculture Organization of the United Nations (FAO). Associations of urinary TMAO and its precursors with food compositions and dietary diversity scores were assessed by generalized linear regression models. In models adjusted for potential confounders, urinary TMAO was significantly associated with intakes of fish (β, regression coefficient = 0.155, p < 0.05) and vegetables (β = 0.120, p < 0.05). Eggs intake showed positive associations with TMAO’s precursors (trimethylamine: β = 0.179, p < 0.05; choline: β = 0.181, p < 0.05). No association between meat intake and TMAO was observed, whereas meat and poultry intakes were related to the levels of acetyl-L-carnitine and L-carnitine (β: 0.134 to 0.293, p < 0.05). The indicators of dietary diversity were positively correlated to TMAO concentration (β: 0.027 to 0.091, p < 0.05). In this free-living children-based study, dietary factors were related to urinary TMAO and its precursors, especially fish, meat, and eggs. As such, dietary diversity was positively related to the level of TMAO.
Collapse
|
23
|
Cavanaugh SM, Cavanaugh RP, Streeter R, Vieira AB, Gilbert GE, Ketzis JK. Commercial Extruded Plant-Based Diet Lowers Circulating Levels of Trimethylamine N-Oxide (TMAO) Precursors in Healthy Dogs: A Pilot Study. Front Vet Sci 2022; 9:936092. [PMID: 35873695 PMCID: PMC9300970 DOI: 10.3389/fvets.2022.936092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Elevations in circulating trimethylamine N-oxide (TMAO) and its precursors are observed in humans and dogs with heart failure and are associated with adverse outcomes in people. Dietary intervention that reduces or excludes animal ingredients results in rapid reduction of plasma TMAO and TMAO precursors in people, but the impact of diet in dogs has not been studied. The objective of the current study was to determine the effect of diet on plasma TMAO and 2 of its precursors (choline and betaine) in dogs fed a commercial extruded plant-based diet (PBD) or a commercial extruded traditional diet (TD) containing animal and plant ingredients. Sixteen healthy adult mixed breed dogs from a university colony were enrolled in a randomized, 2-treatment, 2-period crossover weight-maintenance study. Mean (SD) age and body weight of the dogs were 2.9 years (± 1.7) and 14.5 kg (± 4.0), respectively. Eight dogs were female (3 intact, 5 spayed) and 8 dogs were male (4 intact, 4 castrated). Plasma choline, betaine and TMAO were quantified by LC-SID-MRM/MS at baseline, and after 4 weeks on each diet. Choline and betaine were also quantified in the diets. Plasma choline levels were significantly lower (P = 0.002) in dogs consuming a PBD (Mean ± SD, 6.8 μM ± 1.2 μM) compared to a TD (Mean ± SD, 7.8 μM ± 1.6 μM). Plasma betaine levels were also significantly lower (P = 0.03) in dogs consuming a PBD (Mean ± SD, 109.1 μM ± 25.3 μM) compared to a TD (Mean ± SD, 132.4 μM ± 32.5 μM). No difference (P = 0.71) in plasma TMAO was detected in dogs consuming a PBD (Median, IQR, 2.4 μM, 2.1 μM) compared to a TD (Median, IQR, 2.3 μM, 1.1 μM). Betaine content was lower in the PBD than in the TD while choline content was similar in the diets. Our findings indicate consumption of a commercial extruded PBD for 4 weeks reduces circulating levels of the TMAO precursors choline and betaine, but not TMAO, in healthy adult dogs.
Collapse
Affiliation(s)
- Sarah M. Cavanaugh
- Center for Integrative Mammalian Research, Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
- *Correspondence: Sarah M. Cavanaugh
| | - Ryan P. Cavanaugh
- Center for Integrative Mammalian Research, Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | | | - Aline B. Vieira
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | | | - Jennifer K. Ketzis
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
24
|
Qiao J, Liang Y, Wang Y. Trimethylamine N-Oxide Reduces the Susceptibility of Escherichia coli to Multiple Antibiotics. Front Microbiol 2022; 13:956673. [PMID: 35875516 PMCID: PMC9300990 DOI: 10.3389/fmicb.2022.956673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Trimethylamine N-oxide (TMAO), an important intestinal flora-derived metabolite, plays a role in the development of cardiovascular disease and tumor immunity. Here, we determined the minimum inhibitory concentration (MIC) of antibiotics against Escherichia coli under gradient concentrations of TMAO and performed a bacterial killing analysis. Overall, TMAO (in the range of 10 ~ 100 mM) increased the MIC of quinolones, aminoglycosides, and β-lactams in a concentration-dependent manner, and increased the lethal dose of antibiotics against E. coli. It implies that TMAO is a potential risk for failure of anti-infective therapy, and presents a case for the relationship between intestinal flora-derived metabolites and antibiotic resistance. Further data demonstrated that the inhibition of antibiotic efficacy by TMAO is independent of the downstream metabolic processes of TMAO and the typical bacterial resistance mechanisms (mar motif and efflux pump). Interestingly, TMAO protects E. coli from high-protein denaturant (urea) stress and improves the viability of bacteria following treatment with two disinfectants (ethanol and hydrogen peroxide) that mediate protein denaturation by chemical action or oxidation. Since antibiotics can induce protein inactivation directly or indirectly, our work suggests that disruption of protein homeostasis may be a common pathway for different stress-mediated bacterial growth inhibition/cell death. In addition, we further discuss this possibility, which provides a different perspective to address the global public health problem of antibiotic resistance.
Collapse
Affiliation(s)
- Jiaxin Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Liang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
25
|
Abstract
Given the worldwide epidemic of diet-related chronic diseases, evidence-based dietary recommendations are fundamentally important for health promotion. Despite the importance of the human gut microbiota for the physiological effects of diet and chronic disease etiology, national dietary guidelines around the world are just beginning to capitalize on scientific breakthroughs in the microbiome field. In this review, we discuss contemporary nutritional recommendations from a microbiome science perspective, focusing on mechanistic evidence that established host-microbe interactions as mediators of the physiological effects of diet. We apply this knowledge to inform discussions of nutrition controversies, advance innovative dietary strategies, and propose an experimental framework that integrates the microbiome into nutrition research. The congruence of key paradigms in the nutrition and microbiome disciplines validates current recommendations in dietary guidelines, and the systematic incorporation of microbiome science into nutrition research has the potential to further improve and innovate healthy eating.
Collapse
|
26
|
Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study. Nutrients 2022; 14:nu14102093. [PMID: 35631234 PMCID: PMC9148165 DOI: 10.3390/nu14102093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Animal and human studies have reported conflicting results on the relationship between circulating trimethylamine N-oxide (TMAO) levels and risk of Type 2 diabetes (T2D). This study aimed to compare plasma TMAO levels in people with or without T2D and explore the association of TMAO and T2D. A prospective case-control study of 297 participants, 164 healthy controls and 133 patients with T2D, was conducted. TMAO levels were quantified by UPLC-MS/MS. Comorbidities, dietary patterns, physical activity, and blood biomarkers were assessed. Median (IQR) plasma TMAO levels were significantly higher in diabetes cases (4.95 (2.84−8.35) µmol/L) compared to healthy controls (3.07 (2.05−4.82) µmol/L) (p < 0.001). The association between TMAO and T2D was significant in the non-adjusted Model 1 (p < 0.001) and after adjusting for confounders of diabetes including age, BMI, and level of education in Model 2 (p = 0.04). When the association was further adjusted for physical activity and diet in Model 3, plasma TMAO levels at only the highest quartile (>6.40 µmol/L) were associated with the risk of diabetes (OR = 3.36, 95% CI [1.26, 9.04], p = 0.02). The results presented suggest an association between plasma TMAO levels and T2D. A significant correlation was found between red meat consumption and increased levels of TMAO in T2D patients. A longitudinal study is warranted to further evaluate the correlation between TMAO and T2D.
Collapse
|
27
|
Yu N, Gu N, Wang Y, Zhou B, Lu D, Li J, Ma X, Zhang J, Guo X. The Association of Plasma Trimethylamine N-Oxide with Coronary Atherosclerotic Burden in Patients with Type 2 Diabetes Among a Chinese North Population. Diabetes Metab Syndr Obes 2022; 15:69-78. [PMID: 35035225 PMCID: PMC8754460 DOI: 10.2147/dmso.s339698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE We aimed to examine the association between plasma trimethylamine N-oxide (TMAO), a gut microbial metabolite from dietary phosphatidylcholine, and coronary atherosclerotic burden in patients with type 2 diabetes (T2D). METHODS In total, 349 patients with T2D were studied, including 70 controls and 279 patients with coronary artery disease (CAD) by coronary angiography. Coronary atherosclerotic burden is quantified by the number of diseased coronary branches and SYNTAX (Synergy between PCI with Taxus and Cardiac Surgery) score. Plasma TMAO levels were determined by UHPLC-MS/MS technique. RESULTS The TMAO concentration was significantly higher in the patients with triple vessel disease (TVD) (3.33 [IQR: 1.81-6.65] μM) than those without TVD (2.62 [IQR: 1.50-4.73] μM) (P = 0.015). A similar difference was found between patients with SYNTAX score >22 (3.93 [IQR: 1.81-6.82] μM) and those with SYNTAX score ≤22 (2.54 [IQR: 1.44-4.54] μM) (P = 0.014). TMAO was not significantly correlated with the presence of CAD. Among patients with eGFR <60 mL/min/1.73 m2, the highest tertile of TMAO was significantly associated with TVD (OR = 25.28, 95% CI [2.55-250.33], P = 0.006) and SYNTAX score >22 (OR = 7.23, 95% CI [1.51-34.64], P = 0.013) independent of known risk factors of CAD, compared with lower TMAO tertiles. CONCLUSION TMAO was not independently correlated with the presence of CAD and severity of coronary atherosclerosis in the included population. Nevertheless, the significant association between circulating TMAO and higher coronary atherosclerotic burden was observed in patients with eGFR of lower than 60 mL/min/1.73 m2.
Collapse
Affiliation(s)
- Na Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Yuxin Wang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Bin Zhou
- Department of Cardiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People’s Republic of China
| | - Difei Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Xiaowei Ma
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
- Correspondence: Xiaowei Ma Department of Endocrinology, Peking University First Hospital, Beijing, People’s Republic of ChinaTel/Fax +86-010-83572574 Email
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, 100034, People’s Republic of China
| |
Collapse
|