1
|
Yuan S, Shen Y, Quan Y, Gao S, Zuo J, Jin W, Li R, Yi L, Wang Y, Wang Y. Molecular mechanism and application of emerging technologies in study of bacterial persisters. BMC Microbiol 2024; 24:480. [PMID: 39548389 PMCID: PMC11568608 DOI: 10.1186/s12866-024-03628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Since the discovery of antibiotics, they have served as a potent weapon against bacterial infections; however, natural evolution has allowed bacteria to adapt and develop coping mechanisms, ultimately leading to the concerning escalation of multidrug resistance. Bacterial persisters are a subpopulation that can survive briefly under high concentrations of antibiotic treatment and resume growth after lethal stress. Importantly, bacterial persisters are thought to be a significant cause of ineffective antibiotic therapy and recurrent infections in clinical practice and are thought to contribute to the development of antibiotic resistance. Therefore, it is essential to elucidate the molecular mechanisms of persister formation and to develop precise medical strategies to combat persistent infections. However, there are many difficulties in studying persisters due to their small proportion in the microbiota and their non-heritable nature. In this review, we discuss the similarities and differences of antibiotic resistance, tolerance, persistence, and viable but non-culturable cells, summarize the molecular mechanisms that affect the formation of persisters, and outline the emerging technologies in the study of persisters.
Collapse
Affiliation(s)
- Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
2
|
Thakur Z, Chaudhary R, Mehta PK. Deciphering the role of VapBC toxin-antitoxin systems in Mycobacterium tuberculosis stress adaptation. Future Microbiol 2024; 19:1587-1599. [PMID: 39431307 DOI: 10.1080/17460913.2024.2412447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) harbors a high number of Toxin-Antitoxin (TA) systems, wherein half of them belong to virulence associated proteins B and C (VapBC) family that has a characteristic PilT N-terminus domain and ribonuclease activity. Functional insights into Mtb VapBC TA modules unraveled their role in adaptation to various host-mediated stressors, including oxidative/nitrosative, chemical and nutrient starvation as well as multidrug tolerance and establishment of persistence. To understand the intricacies of Mtb's pathogenesis, absolute cellular targets of 19 VapC(s) were determined. Some exhibit a shared ribonuclease activity, whereas others harbor tRNAse and 23S rRNA cleavage activity. The detailed functional characterization of VapBC4, VapBC12 and VapBC22, including in vivo deletion mutant studies revealed their role in Mtb's virulence/persistence. For example, the VapC22 mutant was attenuated for Mtb's growth in mice and elicited a decreased TH1 response, whereas mice infected with VapC12 mutant displayed a substantially higher bacillary load and pro-inflammatory response than the wild type, showing a hyper-virulent phenotype. Further experimental studies are needed to decode the functional role of VapBC systems and unravel their cellular targets. Taken together, Mtb VapBC TA systems seem to be promising drug targets owing to their key role in enduring stressors, antibiotic resistance and persistence.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, Ambala, 134003, India
| | - Renu Chaudhary
- CSIR-Institute of Genomics & Integrative Biology (CSIR-IGIB), New Delhi, 110025, India
| | - Promod K Mehta
- Microbiology Department, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| |
Collapse
|
3
|
Ko EM, Min J, Kim H, Jeong JA, Lee S, Kim S. Molecular characteristics of drug-susceptible Mycobacterium tuberculosis clinical isolates based on treatment duration. Osong Public Health Res Perspect 2024; 15:385-394. [PMID: 39511960 PMCID: PMC11563727 DOI: 10.24171/j.phrp.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/16/2024] [Accepted: 08/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND In this study, we performed comparative genomic and transcriptomic analysis of clinical isolates of Mycobacterium tuberculosis collected from patients with drug-susceptible tuberculosis (DS-TB). The clinical isolates were categorized based on treatment duration: standard 6 months or >6 months. METHODS Study participants were recruited from a 2016 to 2018 tuberculosis cohort, and clinical M. tuberculosis isolates were collected from the sputum of patients with tuberculosis. We analyzed the genome and transcriptome of the isolated M. tuberculosis. RESULTS Genomic analysis revealed a specific non-synonymous single-nucleotide polymorphism in pe_pgrs9 and ppe34, exclusive to the group treated for >6 months. Transcriptomic analysis revealed increased expression of various virulence-associated protein family genes and decreased expression of ribosomal protein genes and ppe38 genes in the group treated for >6 months. CONCLUSION The identified genetic variation and gene expression patterns may influence treatment outcomes by modulating host immune responses, increasing virulence, and potentially contributing to persister cell formation in M. tuberculosis. This study provides insights into the genetic and transcriptomic factors associated with prolonged DS-TB treatment. However, our study identified molecular characteristics using a small sample size, and further detailed studies are warranted.
Collapse
Affiliation(s)
- Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jinsoo Min
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyungjun Kim
- Division of Infectious Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sungkyoung Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seonghan Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Wang C, Jin L. Microbial persisters and host: recent advances and future perspectives. Crit Rev Microbiol 2023; 49:658-670. [PMID: 36165023 DOI: 10.1080/1040841x.2022.2125286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022]
Abstract
Microbial persisters are defined as the tiny sub-population of microorganisms that develop intrinsic strategies for survival with high tolerance to various antimicrobials. Currently, persister research remains in its infancy, and it is indeed a great challenge to precisely distinguish persister cells from other drug tolerant ones. Notably, the existence of persisters crucially contributes to prolonged antibiotic exposure time and treatment failure, yet there is the formation of antibiotic-resistant mutants. Further understanding on persisters is of profound importance for effective prevention and control of chronic infections/inflammation. The past two decades have witnessed rapid advances on the science, technologies and methodologies for persister investigations, along with deep knowledge about persisters and numerous anti-persister approaches developed. Whereas, various critical issues remain unsolved, such as what are the potential interaction profiles of persisters and host cells, and how to apply what we know about persisters to translational studies and clinical practice. Importantly, it is highly essential to better understand the multifaceted and complex cross-talk of microbial persisters with the host to develop novel tackling strategies for precision healthcare in the near future.
Collapse
Affiliation(s)
- Chuan Wang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
6
|
Mycobacterium tuberculosis Requires the Outer Membrane Lipid Phthiocerol Dimycocerosate for Starvation-Induced Antibiotic Tolerance. mSystems 2023; 8:e0069922. [PMID: 36598240 PMCID: PMC9948706 DOI: 10.1128/msystems.00699-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tolerance of Mycobacterium tuberculosis to antibiotics contributes to the long duration of tuberculosis (TB) treatment and the emergence of drug-resistant strains. M. tuberculosis drug tolerance is induced by nutrient restriction, but the genetic determinants that promote antibiotic tolerance triggered by nutrient limitation have not been comprehensively identified. Here, we show that M. tuberculosis requires production of the outer membrane lipid phthiocerol dimycocerosate (PDIM) to tolerate antibiotics under nutrient-limited conditions. We developed an arrayed transposon (Tn) mutant library in M. tuberculosis Erdman and used orthogonal pooling and transposon sequencing (Tn-seq) to map the locations of individual mutants in the library. We screened a subset of the library (~1,000 mutants) by Tn-seq and identified 32 and 102 Tn mutants with altered tolerance to antibiotics under stationary-phase and phosphate-starved conditions, respectively. Two mutants recovered from the arrayed library, ppgK::Tn and clpS::Tn, showed increased susceptibility to two different drug combinations under both nutrient-limited conditions, but their phenotypes were not complemented by the Tn-disrupted gene. Whole-genome sequencing revealed single nucleotide polymorphisms in both the ppgK::Tn and clpS::Tn mutants that prevented PDIM production. Complementation of the clpS::Tn ppsD Q291* mutant with ppsD restored PDIM production and antibiotic tolerance, demonstrating that loss of PDIM sensitized M. tuberculosis to antibiotics. Our data suggest that drugs targeting production of PDIM, a critical M. tuberculosis virulence determinant, have the potential to enhance the efficacy of existing antibiotics, thereby shortening TB treatment and limiting development of drug resistance. IMPORTANCE Mycobacterium tuberculosis causes 10 million cases of active TB disease and over 1 million deaths worldwide each year. TB treatment is complex, requiring at least 6 months of therapy with a combination of antibiotics. One factor that contributes to the length of TB treatment is M. tuberculosis phenotypic antibiotic tolerance, which allows the bacteria to survive prolonged drug exposure even in the absence of genetic mutations causing drug resistance. Here, we report a genetic screen to identify M. tuberculosis genes that promote drug tolerance during nutrient starvation. Our study revealed the outer membrane lipid phthiocerol dimycocerosate (PDIM) as a key determinant of M. tuberculosis antibiotic tolerance triggered by nutrient starvation. Our study implicates PDIM synthesis as a potential target for development of new TB drugs that would sensitize M. tuberculosis to existing antibiotics to shorten TB treatment.
Collapse
|
7
|
Quigley J, Lewis K. Noise in a Metabolic Pathway Leads to Persister Formation in Mycobacterium tuberculosis. Microbiol Spectr 2022; 10:e0294822. [PMID: 36194154 PMCID: PMC9602276 DOI: 10.1128/spectrum.02948-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/22/2022] [Indexed: 01/04/2023] Open
Abstract
Tuberculosis is difficult to treat due to dormant cells formed in response to immune stress and stochastically formed persisters, both of which are tolerant of antibiotics. Bactericidal antibiotics kill by corrupting their energy-dependent targets. We reasoned that stochastic variation, or noise, in the expression of an energy-generating component will produce rare persister cells. In sorted M. tuberculosis cells grown on acetate, there is considerable cell-to-cell variation in the level of mRNA coding for AckA, the acetate kinase. Quenching the noise by overexpressing ackA sharply decreases persisters, showing that it acts as the main persister gene under these conditions. This demonstrates that a low energy mechanism is responsible for the formation of M. tuberculosis persisters. Entrance into a low-energy state driven by noise in expression of energy-producing enzymes is likely a general mechanism by which bacteria produce persisters. IMPORTANCE M. tuberculosis infection requires the administration of multiple antibiotics for a prolonged period of time. Treatment difficulty is generally attributed to M. tuberculosis entrance into a nonreplicative, antibiotic-tolerant state. M. tuberculosis enters this nonreplicative state in response to immune stress. However, a small population of cells enter a nonreplicative, multidrug-tolerant state under normal growth conditions, absent any stress. These cells are termed persisters. The mechanisms by which persisters enter a nonreplicative state are largely unknown. Here, we show that, as with other bacteria, M. tuberculosis persisters are low-energy cells formed stochastically during normal growth. Additionally, we identify the natural variation in the expression of energy producing genes as a source of the stochastic entrance of M. tuberculosis into the low-energy persister state. These findings have important implications for understanding the heterogeneous nature of M. tuberculosis infection and will aid in designing better treatment regimens against this important human pathogen.
Collapse
Affiliation(s)
- Jeffrey Quigley
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Moxifloxacin-Mediated Killing of Mycobacterium tuberculosis Involves Respiratory Downshift, Reductive Stress, and Accumulation of Reactive Oxygen Species. Antimicrob Agents Chemother 2022; 66:e0059222. [PMID: 35975988 PMCID: PMC9487606 DOI: 10.1128/aac.00592-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Moxifloxacin is central to treatment of multidrug-resistant tuberculosis. Effects of moxifloxacin on the Mycobacterium tuberculosis redox state were explored to identify strategies for increasing lethality and reducing the prevalence of extensively resistant tuberculosis. A noninvasive redox biosensor and a reactive oxygen species (ROS)-sensitive dye revealed that moxifloxacin induces oxidative stress correlated with M. tuberculosis death. Moxifloxacin lethality was mitigated by supplementing bacterial cultures with an ROS scavenger (thiourea), an iron chelator (bipyridyl), and, after drug removal, an antioxidant enzyme (catalase). Lethality was also reduced by hypoxia and nutrient starvation. Moxifloxacin increased the expression of genes involved in the oxidative stress response, iron-sulfur cluster biogenesis, and DNA repair. Surprisingly, and in contrast with Escherichia coli studies, moxifloxacin decreased expression of genes involved in respiration, suppressed oxygen consumption, increased the NADH/NAD+ ratio, and increased the labile iron pool in M. tuberculosis. Lowering the NADH/NAD+ ratio in M. tuberculosis revealed that NADH-reductive stress facilitates an iron-mediated ROS surge and moxifloxacin lethality. Treatment with N-acetyl cysteine (NAC) accelerated respiration and ROS production, increased moxifloxacin lethality, and lowered the mutant prevention concentration. Moxifloxacin induced redox stress in M. tuberculosis inside macrophages, and cotreatment with NAC potentiated the antimycobacterial efficacy of moxifloxacin during nutrient starvation, inside macrophages, and in mice, where NAC restricted the emergence of resistance. Thus, NADH-reductive stress contributes to moxifloxacin-mediated killing of M. tuberculosis, and the respiration stimulator (NAC) enhances lethality and suppresses the emergence of drug resistance.
Collapse
|
9
|
Abstract
Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sara B. Cohen
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benjamin H. Gern
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kevin B. Urdahl
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Pradhan A, Swaminath S, Jakkala K, Ajitkumar P. A method for the enrichment, isolation and validation of Mycobacterium smegmatis population surviving in the presence of bactericidal concentrations of rifampicin and moxifloxacin. FEMS Microbiol Lett 2021; 368:fnab090. [PMID: 34240144 DOI: 10.1093/femsle/fnab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/06/2021] [Indexed: 11/14/2022] Open
Abstract
The bacterial populations surviving in the presence of antibiotics contain cells that have gained genetic resistance, phenotypic resistance and tolerance to antibiotics. Isolation of live bacterial population, surviving against antibiotics, from the milieu of high proportions of dead/damaged cells will facilitate the study of the cellular/molecular processes used by them for survival. Here we present a Percoll gradient centrifugation based method for the isolation of enriched population of Mycobacterium smegmatis surviving in the presence of bactericidal concentrations of rifampicin and moxifloxacin. From the time of harvest, throughout the enrichment and isolation processes, and up to the lysis of the cells for total RNA preparation, we maintained the cells in the presence of the antibiotic to avoid changes in their metabolic status. The total RNA extracted from the enriched population of live antibiotic-surviving population showed structural integrity and purity. We analysed the transcriptome profile of the antibiotic-surviving population and compared it with the orthologue genes of Mycobacterium tuberculosis that conferred antibiotic tolerance on tubercle bacilli isolated from the tuberculosis patients under treatment with four antitubercular antibiotics. Statistically significant comparability between the gene expression profiles of the antibiotic tolerance associated genes of M. smegmatis and M. tuberculosis validated the reliability/utility of the method.
Collapse
Affiliation(s)
- Atul Pradhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Malleswaram, Bangalore 560012, Karnataka, India
| | - Sharmada Swaminath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Malleswaram, Bangalore 560012, Karnataka, India
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Indian Institute of Science, Malleswaram, Bangalore 560012, Karnataka, India
| | - Parthasarathi Ajitkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Malleswaram, Bangalore 560012, Karnataka, India
| |
Collapse
|
11
|
Azer K, Kaddi CD, Barrett JS, Bai JPF, McQuade ST, Merrill NJ, Piccoli B, Neves-Zaph S, Marchetti L, Lombardo R, Parolo S, Immanuel SRC, Baliga NS. History and Future Perspectives on the Discipline of Quantitative Systems Pharmacology Modeling and Its Applications. Front Physiol 2021; 12:637999. [PMID: 33841175 PMCID: PMC8027332 DOI: 10.3389/fphys.2021.637999] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Mathematical biology and pharmacology models have a long and rich history in the fields of medicine and physiology, impacting our understanding of disease mechanisms and the development of novel therapeutics. With an increased focus on the pharmacology application of system models and the advances in data science spanning mechanistic and empirical approaches, there is a significant opportunity and promise to leverage these advancements to enhance the development and application of the systems pharmacology field. In this paper, we will review milestones in the evolution of mathematical biology and pharmacology models, highlight some of the gaps and challenges in developing and applying systems pharmacology models, and provide a vision for an integrated strategy that leverages advances in adjacent fields to overcome these challenges.
Collapse
Affiliation(s)
- Karim Azer
- Quantitative Sciences, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, United States
| | - Chanchala D. Kaddi
- Quantitative Sciences, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, United States
| | | | - Jane P. F. Bai
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Sean T. McQuade
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Nathaniel J. Merrill
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Benedetto Piccoli
- Department of Mathematical Sciences and Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Susana Neves-Zaph
- Translational Disease Modeling, Data and Data Science, Sanofi, Bridgewater, NJ, United States
| | - Luca Marchetti
- Fondazione the Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Rosario Lombardo
- Fondazione the Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Silvia Parolo
- Fondazione the Microsoft Research – University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | | |
Collapse
|
12
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Persistence of Intracellular Bacterial Pathogens-With a Focus on the Metabolic Perspective. Front Cell Infect Microbiol 2021; 10:615450. [PMID: 33520740 PMCID: PMC7841308 DOI: 10.3389/fcimb.2020.615450] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Persistence has evolved as a potent survival strategy to overcome adverse environmental conditions. This capability is common to almost all bacteria, including all human bacterial pathogens and likely connected to chronic infections caused by some of these pathogens. Although the majority of a bacterial cell population will be killed by the particular stressors, like antibiotics, oxygen and nitrogen radicals, nutrient starvation and others, a varying subpopulation (termed persisters) will withstand the stress situation and will be able to revive once the stress is removed. Several factors and pathways have been identified in the past that apparently favor the formation of persistence, such as various toxin/antitoxin modules or stringent response together with the alarmone (p)ppGpp. However, persistence can occur stochastically in few cells even of stress-free bacterial populations. Growth of these cells could then be induced by the stress conditions. In this review, we focus on the persister formation of human intracellular bacterial pathogens, some of which belong to the most successful persister producers but lack some or even all of the assumed persistence-triggering factors and pathways. We propose a mechanism for the persister formation of these bacterial pathogens which is based on their specific intracellular bipartite metabolism. We postulate that this mode of metabolism ultimately leads, under certain starvation conditions, to the stalling of DNA replication initiation which may be causative for the persister state.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|