1
|
Du Y, Han W, Hao P, Hu Y, Hu T, Zeng Y. A Genomics-Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in the Potential Novel Strain Streptomyces sp. 21So2-11 Isolated from Antarctic Soil. Microorganisms 2024; 12:1228. [PMID: 38930610 PMCID: PMC11205464 DOI: 10.3390/microorganisms12061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Streptomyces species are attractive sources of secondary metabolites that serve as major sources of antibiotics and other drugs. In this study, genome mining was used to determine the biosynthetic potential of Streptomyces sp. 21So2-11 isolated from Antarctic soil. 16S rRNA gene sequencing revealed that this strain is most closely related to Streptomyces drozdowiczii NBRC 101007T, with a similarity of 98.02%. Genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) showed that strain 21So2-11 represents a novel species of the genus Streptomyces. In addition to a large number of genes related to environmental adaptation and ecological function, a total of 28 putative biosynthetic gene clusters (BGCs) responsible for the biosynthesis of known and/or novel secondary metabolites, including terpenes, lantipeptides, polyketides, nonribosomal peptides, RiPPs and siderophores, were detected in the genome of strain 21So2-11. In addition, a total of 1456 BGCs were predicted to contribute to the biosynthesis of more than 300 secondary metabolites based on the genomes of 47 Streptomyces strains originating from polar regions. The results indicate the potential of Streptomyces sp. 21So2-11 for bioactive secondary metabolite production and are helpful for understanding bacterial adaptability and ecological function in cold terrestrial environments.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
| | - Wei Han
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
| | - Puyu Hao
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yongqiang Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
| | - Ting Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
| | - Yinxin Zeng
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| |
Collapse
|
2
|
Mustafa YF. Harmful Free Radicals in Aging: A Narrative Review of Their Detrimental Effects on Health. Indian J Clin Biochem 2024; 39:154-167. [PMID: 38577147 PMCID: PMC10987461 DOI: 10.1007/s12291-023-01147-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 04/06/2024]
Abstract
The production of harmful free radicals (H-FRs), especially those with oxygen or nitrogen atoms, depends on both internal and environmental causes. The negative effects of H-FRs are greatly alleviated by antioxidant protection. The harmful impact of oxidative stress, or OS, is brought on by a disparity between the defense mechanisms of the body and the creation of H-FRs. Aging is characterized by a slow decline in tissue and organ competence. Age-mediated pathologies start as an aberrant accumulation of H-FRs, which inhibit cells' capacity to divide, repair, and operate, based on the OS theorem of aging. The natural outcome of this situation is apoptosis. These conditions may include skeletal muscle dysfunction, cancer, cardiovascular, chronic hepatitis, chronic renal, and chronic pulmonary disorders. Given the substantial role that OS plays in the progression of many of these illnesses, antioxidant-based therapy may have a favorable impact on how these diseases progress. To ascertain the true efficacy of this therapy strategy, more research is necessary. The aim of this study is to provide an overview of the literature on this challenging issue that is attracting interest.
Collapse
Affiliation(s)
- Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|