1
|
Larrinaga WB, Jung JJ, Lin CY, Boal AK, Cotruvo JA. Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides. Proc Natl Acad Sci U S A 2024; 121:e2410926121. [PMID: 39467132 PMCID: PMC11551332 DOI: 10.1073/pnas.2410926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024] Open
Abstract
Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize Methylobacterium (Methylorubrum) extorquens LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIII and SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIII and NdIII by 100-fold. Selective dimerization enriches high-value PrIII and NdIII relative to low-value LaIII and CeIII in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for NdIII and SmIII. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.
Collapse
Affiliation(s)
- Wyatt B. Larrinaga
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Jonathan J. Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
2
|
Gorniak L, Bucka SL, Nasr B, Cao J, Hellmann S, Schäfer T, Westermann M, Bechwar J, Wegner CE. Changes in growth, lanthanide binding, and gene expression in Pseudomonas alloputida KT2440 in response to light and heavy lanthanides. mSphere 2024; 9:e0068524. [PMID: 39291981 PMCID: PMC11520305 DOI: 10.1128/msphere.00685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Pseudomonas alloputida KT2440 is a ubiquitous, soil-dwelling bacterium that metabolizes recalcitrant and volatile carbon sources. The latter is utilized by two redundant, Ca- and lanthanide (Ln)-dependent, pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ ADH), PedE and PedH, whose expression is regulated by Ln availability. P. alloputida KT2440 is the best-studied non-methylotroph in the context of Ln-utilization. Combined with microfluidic cultivation and single-cell elemental analysis, we studied the impact of light and heavy Ln on transcriptome-wide gene expression when growing P. alloputida KT2440 with 2-phenylethanol as the carbon and energy source. Light Ln (La, Ce, and Nd) and a mixture of light and heavy Ln (La, Ce, Nd, Dy, Ho, Er, and Yb) had a positive effect on growth, whereas supplementation with heavy Ln (Dy, Ho, Er, and Yb) exerted fitness costs. These were likely a consequence of mismetallation and non-utilizable Ln interfering with Ln sensing and signaling. The measured amounts of cell-associated Ln varied between elements. Gene expression analysis suggested that the Ln sensing and signaling machinery, the two-component system PedS2R2 and PedH, responds differently to (non-)utilizable Ln. We expanded our understanding of the lanthanide (Ln) switch in P. alloputida KT2440, demonstrating that it adjusts the levels of pedE and pedH transcripts based on the availability of Ln. We propose that the usability of Ln influences the bacterium's response to different Ln elements.IMPORTANCEThe Ln switch, the inverse regulation of Ca- and Ln-dependent PQQ ADH in response to Ln availability in organisms featuring both, is central to our understanding of Ln utilization. Although the preference of bacteria for light Ln is well known, the effect of different Ln, light and heavy, on growth and gene expression has rarely been studied. We provide evidence for a fine-tuning mechanism of Ca- and Ln-dependent PQQ ADH in P. alloputida KT2440 on the transcriptome level. The response to (non-)utilizable Ln differs depending on the element. Ln commonly co-occur in nature. Our findings underline that Ln-utilizing microbes must be able to discriminate between Ln to use them effectively. Considering the prevalence of Ln-dependent proteins in many microbial taxa, more work addressing Ln sensing and signaling is needed. Ln availability likely necessitates different adaptations regarding Ln utilization.
Collapse
Affiliation(s)
- Linda Gorniak
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Luise Bucka
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Bayan Nasr
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnique, Technische Universität Ilmenau, Ilmenau, Germany
| | - Jialan Cao
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnique, Technische Universität Ilmenau, Ilmenau, Germany
| | - Steffen Hellmann
- Institute of Geosciences, Applied Geology, Friedrich Schiller University Jena, Jena, Germany
- International Max Planck Research School for Global Biogeochemical Cycles, Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Thorsten Schäfer
- Institute of Geosciences, Applied Geology, Friedrich Schiller University Jena, Jena, Germany
| | | | - Julia Bechwar
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Carl-Eric Wegner
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
- Bioinorganic Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Arino T, Faulkner D, Bustillo KC, An DD, Jorgens D, Hébert S, McKinley C, Proctor M, Loguinov A, Vulpe C, Abergel RJ. Electron microscopy evidence of gadolinium toxicity being mediated through cytoplasmic membrane dysregulation. Metallomics 2024; 16:mfae042. [PMID: 39313325 PMCID: PMC11497612 DOI: 10.1093/mtomcs/mfae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
Past functional toxicogenomic studies have indicated that genes relevant to membrane lipid synthesis are important for tolerance to the lanthanides. Moreover, previously reported imaging of patient's brains following administration of gadolinium-based contrast agents shows gadolinium lining the vessels of the brain. Taken together, these findings suggest the disruption of cytoplasmic membrane integrity as a mechanism by which lanthanides induce cytotoxicity. In the presented work we used scanning transmission electron microscopy and spatially resolved elemental spectroscopy to image the morphology and composition of gadolinium, europium, and samarium precipitates that formed on the outside of yeast cell membranes. In no sample did we find that the lanthanide contaminant had crossed the cell membrane, even in experiments using yeast mutants with disrupted genes for sphingolipid synthesis-the primary lipids found in yeast cytoplasmic membranes. Rather, we have evidence that lanthanides are co-located with phosphorus outside the yeast cells. These results lead us to hypothesize that the lanthanides scavenge or otherwise form complexes with phosphorus from the sphingophospholipid head groups in the cellular membrane, thereby compromising the structure or function of the membrane, and gaining the ability to disrupt membrane function without entering the cell.
Collapse
Affiliation(s)
- Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Danielle Jorgens
- Electron Microscope Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
| | - Carla McKinley
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, USA
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Phi MT, Singer H, Zäh F, Haisch C, Schneider S, Op den Camp HJM, Daumann LJ. Assessing Lanthanide-Dependent Methanol Dehydrogenase Activity: The Assay Matters. Chembiochem 2024; 25:e202300811. [PMID: 38269599 DOI: 10.1002/cbic.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency.
Collapse
Affiliation(s)
- Manh Tri Phi
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Helena Singer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Felix Zäh
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Christoph Haisch
- Faculty of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, Research Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|