1
|
Cheng C, Liu F, Wu Y, Li P, Chen W, Wu C, Sun J. Positive Linkage in Bacterial Microbiota at the Plant-Insect Interface Benefits an Invasive Bark Beetle. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40091613 DOI: 10.1111/pce.15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Symbiotic microbes facilitate rapid adaptation of invasive insects on novel plants via multifaceted function provisions, but little was known on the importance of cross linkages in symbiotic microbiota to insect invasiveness. Novel host pine Pinus tabuliformis is inherently unsuitable for invasive red turpentine beetle (RTB) in China; however, Novosphingobium and Erwinia/Serratia in gallery microbiota (at the interface between RTB larvae and pine phloem) have been discovered to help beetles via biodegrading pine detrimental compounds naringenin and pinitol, respectively. Here, we further revealed significant positive linkage of the two functions, with higher activity level conferring more growth benefit to RTB larvae. Abundance of Erwinia/Serratia was remarkably increased in response to pinitol, while naringenin-biodegrading Novosphingobium was unable to utilize this main phloem carbohydrate directly. High-activity bacterial microbiota produced nutritive metabolites (sucrose and hexadecanoic acid) from pinitol consumption that facilitated growth of both Novosphingobium and beetle larvae. Functional proteins of several bacterial taxa were enriched in high-activity microbiota that appeared to form a metabolic network collectively to regulate the nutrient production. Our results indicate that positive interaction between Erwinia/Serratia and Novosphingobium is critical for RTB invasion success, while Bacilli bacteria might restrict this linkage, providing new insights into symbiotic microbial interactions for insect herbivores.
Collapse
Affiliation(s)
- Chihang Cheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, China
- Department of Biology, Lund University, Lund, Sweden
| | - Fanghua Liu
- Hebei Basic Science Center for Biotic Interactions, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yi Wu
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, China
| | - Peng Li
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, School of Life Sciences, Huzhou University, Huzhou, China
| | - Wei Chen
- Hebei Basic Science Center for Biotic Interactions, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Chenhao Wu
- Hebei Basic Science Center for Biotic Interactions, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions, College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Fackelmann G, Manghi P, Carlino N, Heidrich V, Piccinno G, Ricci L, Piperni E, Arrè A, Bakker E, Creedon AC, Francis L, Capdevila Pujol J, Davies R, Wolf J, Bermingham KM, Berry SE, Spector TD, Asnicar F, Segata N. Gut microbiome signatures of vegan, vegetarian and omnivore diets and associated health outcomes across 21,561 individuals. Nat Microbiol 2025; 10:41-52. [PMID: 39762435 PMCID: PMC11726441 DOI: 10.1038/s41564-024-01870-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 10/25/2024] [Indexed: 01/12/2025]
Abstract
As plant-based diets gain traction, interest in their impacts on the gut microbiome is growing. However, little is known about diet-pattern-specific metagenomic profiles across populations. Here we considered 21,561 individuals spanning 5 independent, multinational, human cohorts to map how differences in diet pattern (omnivore, vegetarian and vegan) are reflected in gut microbiomes. Microbial profiles distinguished these common diet patterns well (mean AUC = 0.85). Red meat was a strong driver of omnivore microbiomes, with corresponding signature microbes (for example, Ruminococcus torques, Bilophila wadsworthia and Alistipes putredinis) negatively correlated with host cardiometabolic health. Conversely, vegan signature microbes were correlated with favourable cardiometabolic markers and were enriched in omnivores consuming more plant-based foods. Diet-specific gut microbes partially overlapped with food microbiomes, especially with dairy microbes, for example, Streptococcus thermophilus, and typical soil microbes in vegans. The signatures of common western diet patterns can support future nutritional interventions and epidemiology.
Collapse
Affiliation(s)
- Gloria Fackelmann
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Niccolò Carlino
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Vitor Heidrich
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gianmarco Piccinno
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Liviana Ricci
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Elisa Piperni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | | | | | | | | | | | | | | | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Tim D Spector
- ZOE Ltd., London, UK
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
- European Institute of Oncology, Scientific Institute for Research, Hospitalization and Healthcare, Milan, Italy.
| |
Collapse
|
3
|
Sommerfeld V, Hanauska A, Huber K, Bennewitz J, Camarinha-Silva A, Feger M, Föller M, Oster M, Ponsuksili S, Schmucker S, Seifert J, Stefanski V, Wimmers K, Rodehutscord M. Effects of myo-inositol supplementation in the diet on myo-inositol concentrations in the intestine, blood, eggs, and excreta of laying hens. Poult Sci 2025; 104:104545. [PMID: 39579515 PMCID: PMC11617940 DOI: 10.1016/j.psj.2024.104545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024] Open
Abstract
The objectives of this study were to investigate whether an increased dietary myo-inositol (MI) supply translates into changes in MI concentrations and endogenous mucosal phosphatase activities in the intestine of laying hens and whether different laying hen strains respond differently to MI supplementation. The diets were corn-soybean meal-based and supplemented without (MI0) or with 1 (MI1), 2 (MI2), or 3 (MI3) g MI/kg feed. Ten hens per strain (Lohmann Brown-classic (LB) and Lohmann LSL-classic (LSL)) and diet were sacrificed at the age of 30 wk following a 4-wk stay in a metabolic unit. The blood plasma, digesta of the duodenum+jejunum and distal ileum, mucosa of the duodenum, and eggs were collected at wk 30. The concentration of MI in the blood plasma was increased by MI supplementation (P < 0.001); however, that of MI3 did not further increase compared with MI2. The concentration of MI in the duodenum+jejunum and ileum increased steadily (P < 0.001). The MI concentration in the duodenum+jejunum was higher in LB than in LSL hens (P = 0.017). The MI concentration in egg yolk was increased by MI supplementation (P < 0.001) and was higher in LB than in LSL hens (P = 0.015). Strain or diet did not affect mucosal phosphatase activity. Myo-inositol flow at the terminal ileum and postileal disappearance increased with each increment in MI supplementation (P < 0.001) and was higher in LB than in LSL hens (P ≤ 0.041). Regression analysis indicated that, on average, 84% of supplemented MI was retained in the body or metabolized and excreted in a different form. Based on the measured MI concentrations in the blood and eggs, dietary MI was not completely absorbed in the small intestine and, to a different extent, in the two laying hen strains. A higher dietary MI supply was followed by higher intestinal absorption or metabolism by microorganisms. The fate of supplemented MI and its relevance to birds warrant further research.
Collapse
Affiliation(s)
- Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Anna Hanauska
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Korinna Huber
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | | | - Martina Feger
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Sonja Schmucker
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Volker Stefanski
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
4
|
Su XB, Saiardi A. The role of inositol in the environmental organic phosphate cycle. Curr Opin Biotechnol 2024; 90:103196. [PMID: 39276615 DOI: 10.1016/j.copbio.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
Cellular synthesis of phytic acid sequesters phosphates in the sugar inositol. Phytic acid in soil represents the most abundant form of organic phosphates. The supplementation of phytase or phytase-producing organisms has been considered as a strategy to improve usable soil phosphates. However, the impacts on the environmental flow of inositol, which is generated along with phosphate by phytase, have not been examined. In this review, we discuss the origin and nature of inositol produced in soil and the several possible destinations of inositol released by phytase activities. We emphasise how an improved understanding of soil inositol flow could help to provide new solutions to the phosphate shortage problem in agriculture.
Collapse
Affiliation(s)
- Xue B Su
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
5
|
Hu S, Tian G, Bai Y, Qu A, He Q, Chen L, Xu P. Alternative splicing dynamically regulates common carp embryogenesis under thermal stress. BMC Genomics 2024; 25:918. [PMID: 39358679 PMCID: PMC11448050 DOI: 10.1186/s12864-024-10838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Thermal stress is a major environmental factor affecting fish development and survival. Common carp (Cyprinus carpio) are susceptible to heat stress in their embryonic and larval phases, but the thermal stress response of alternative splicing during common carp embryogenesis remains poorly understood. RESULTS Using RNA-seq data from eight developmental stages and four temperatures, we constructed a comprehensive profile of alternative splicing (AS) during the embryogenesis of common carp, and found that AS genes and events are widely distributed among all stages. A total of 5,835 developmental stage-specific AS (SAS) genes, 21,368 temperature-specific differentially expressed genes (TDEGs), and 2,652 temperature-specific differentially AS (TDAS) genes were identified. Hub TDAS genes in each developmental stage, such as taf2, hnrnpa1, and drg2, were identified through protein-protein interaction (PPI) network analysis. The early developmental stages may be more sensitive to temperature, with thermal stress leading to a massive increase in the number of expressed transcripts, TDEGs, and TDAS genes in the morula stage, followed by the gastrula stage. GO and KEGG analyses showed that from the morula stage to the neurula stage, TDAS genes were more involved in intracellular transport, protein modification, and localization processes, while from the optic vesicle stage to one day post-hatching, they participated more in biosynthetic processes. Further subgenomic analysis revealed that the number of AS genes and events in subgenome B was generally higher than that in subgenome A, and the homologous AS genes were significantly enriched in basic life activity pathways, such as mTOR signaling pathway, p53 signaling pathway, and MAPK signaling pathway. Additionally, lncRNAs can play a regulatory role in the response to thermal stress by targeting AS genes such as lmnl3, affecting biological processes such as apoptosis and axon guidance. CONCLUSIONS In short, thermal stress can affect alternative splicing regulation during common carp embryogenesis at multiple levels. Our work complemented some gaps in the study of alternative splicing at both levels of embryogenesis and thermal stress in C. carpio and contributed to the comprehension of environmental adaptation formation in polyploid fishes during embryogenesis.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guopeng Tian
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
6
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus: acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo-inositol. Appl Environ Microbiol 2024; 90:e0092024. [PMID: 38874337 PMCID: PMC11267925 DOI: 10.1128/aem.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
Affiliation(s)
| | - Rachel M. Loughran
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Gary P. Richards
- U.S. Department of Agriculture, Agricultural Research Service, Dover, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
7
|
Boas Lichty KE, Loughran RM, Ushijima B, Richards GP, Boyd EF. Osmotic stress response of the coral and oyster pathogen Vibrio coralliilyticus : acquisition of catabolism gene clusters for the compatible solute and signaling molecule myo -inositol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575920. [PMID: 38766061 PMCID: PMC11100586 DOI: 10.1101/2024.01.16.575920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo -inositol. Myo -inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo -inositol ( iol ) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo -inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo -inositol. Within the iol clusters were an MFS-type ( iolT1) and an ABC-type ( iolXYZ) transporter and analyses showed that both transported myo -inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae , IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna. IMPORTANCE Host associated bacteria such as V. coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo -inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo -inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo -inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.
Collapse
|
8
|
Venero ECS, Giambartolomei L, Sosa E, Fernández do Porto D, López NI, Tribelli PM. Nitrosative stress under microaerobic conditions triggers inositol metabolism in Pseudomonas extremaustralis. PLoS One 2024; 19:e0301252. [PMID: 38696454 PMCID: PMC11065229 DOI: 10.1371/journal.pone.0301252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Bacteria are exposed to reactive oxygen and nitrogen species that provoke oxidative and nitrosative stress which can lead to macromolecule damage. Coping with stress conditions involves the adjustment of cellular responses, which helps to address metabolic challenges. In this study, we performed a global transcriptomic analysis of the response of Pseudomonas extremaustralis to nitrosative stress, induced by S-nitrosoglutathione (GSNO), a nitric oxide donor, under microaerobic conditions. The analysis revealed the upregulation of genes associated with inositol catabolism; a compound widely distributed in nature whose metabolism in bacteria has aroused interest. The RNAseq data also showed heightened expression of genes involved in essential cellular processes like transcription, translation, amino acid transport and biosynthesis, as well as in stress resistance including iron-dependent superoxide dismutase, alkyl hydroperoxide reductase, thioredoxin, and glutathione S-transferase in response to GSNO. Furthermore, GSNO exposure differentially affected the expression of genes encoding nitrosylation target proteins, encompassing metalloproteins and proteins with free cysteine and /or tyrosine residues. Notably, genes associated with iron metabolism, such as pyoverdine synthesis and iron transporter genes, showed activation in the presence of GSNO, likely as response to enhanced protein turnover. Physiological assays demonstrated that P. extremaustralis can utilize inositol proficiently under both aerobic and microaerobic conditions, achieving growth comparable to glucose-supplemented cultures. Moreover, supplementing the culture medium with inositol enhances the stress tolerance of P. extremaustralis against combined oxidative-nitrosative stress. Concordant with the heightened expression of pyoverdine genes under nitrosative stress, elevated pyoverdine production was observed when myo-inositol was added to the culture medium. These findings highlight the influence of nitrosative stress on proteins susceptible to nitrosylation and iron metabolism. Furthermore, the activation of myo-inositol catabolism emerges as a protective mechanism against nitrosative stress, shedding light on this pathway in bacterial systems, and holding significance in the adaptation to unfavorable conditions.
Collapse
Affiliation(s)
| | - Lucia Giambartolomei
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Sosa
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Darío Fernández do Porto
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Nancy I. López
- IQUIBICEN-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M. Tribelli
- IQUIBICEN-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Felsl A, Brokatzky D, Kröger C, Heermann R, Fuchs TM. Hierarchic regulation of a metabolic pathway: H-NS, CRP, and SsrB control myo-inositol utilization by Salmonella enterica. Microbiol Spectr 2024; 12:e0272423. [PMID: 38095474 PMCID: PMC10783015 DOI: 10.1128/spectrum.02724-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The capacity to utilize myo-inositol (MI) as sole carbon and energy source is widespread among bacteria, among them the intestinal pathogen S. Typhimurium. This study elucidates the complex and hierarchical regulation that underlies the utilization of MI by S. Typhimurium under substrate limitation. A total of seven regulatory factors have been identified so far, allowing the pathogen an environment-dependent, efficient, and fine-tuned regulation of a metabolic property that provides growth advantages in different environments.
Collapse
Affiliation(s)
- Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
| | - Dominik Brokatzky
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
| | - Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Ralf Heermann
- Johannes Gutenberg University Mainz, Institute of Molecular Physiology (imP), Biocenter II, Microbiology and Biotechnology, Mainz, Germany
| | - Thilo M. Fuchs
- Lehrstuhl für Mikrobielle Ökologie, ZIEL-Institute for Food and Health, School of Life Science, Technische Universität München, Freising, Germany
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
10
|
Wu F, Ren F, Xie X, Meng J, Wu X. The implication of viability and pathogenicity by truncated lipopolysaccharide in Yersinia enterocolitica. Appl Microbiol Biotechnol 2023; 107:7165-7180. [PMID: 37728625 DOI: 10.1007/s00253-023-12785-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The fast envelope stress responses play a key role in the transmission and pathogenesis of Yersinia enterocolitica, one of the most common foodborne pathogens. Our previous study showed that deletion of the waaF gene, essential for the biosynthesis of lipopolysaccharide (LPS) core polysaccharides, led to the formation of a truncated LPS structure and induced cell envelope stress. This envelope stress may disturb the intracellular signal transduction, thereby affecting the physiological functions of Y. enterocolitica. In this study, truncated LPS caused by waaF deletion was used as a model of envelope stress in Y. enterocolitica. We investigated the mechanisms of envelope stress responses and the cellular functions affected by truncated LPS. Transcriptome analysis and phenotypic validation showed that LPS truncation reduced flagellar assembly, bacterial chemotaxis, and inositol phosphate metabolism, presenting lower pathogenicity and viability both in vivo and in vitro environments. Further 4D label-free phosphorylation analysis confirmed that truncated LPS perturbed multiple intracellular signal transduction pathways. Specifically, a comprehensive discussion was conducted on the mechanisms by which chemotactic signal transduction and Rcs system contribute to the inhibition of chemotaxis. Finally, the pathogenicity of Y. enterocolitica with truncated LPS was evaluated in vitro using IPEC-J2 cells as models, and it was found that truncated LPS exhibited reduced adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. Our research provides an understanding of LPS in the regulation of Y. enterocolitica viability and pathogenicity and, thus, opening new avenues to develop novel food safety strategies or drugs to prevent and control Y. enterocolitica infections. KEY POINTS: • Truncated LPS reduces flagellar assembly, chemotaxis, and inositol phosphate metabolism in Y. enterocolitica. • Truncated LPS reduces adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. • Truncated LPS regulates intracellular signal transduction of Y. enterocolitica.
Collapse
Affiliation(s)
- Fan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Fengyun Ren
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China.
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308, China
| |
Collapse
|
11
|
Sánchez-Gil JJ, Poppeliers SWM, Vacheron J, Zhang H, Odijk B, Keel C, de Jonge R. The conserved iol gene cluster in Pseudomonas is involved in rhizosphere competence. Curr Biol 2023; 33:3097-3110.e6. [PMID: 37419116 DOI: 10.1016/j.cub.2023.05.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 07/09/2023]
Abstract
The Pseudomonas genus has shown great potential as a sustainable solution to support agriculture through its plant-growth-promoting and biocontrol activities. However, their efficacy as bioinoculants is limited by unpredictable colonization in natural conditions. Our study identifies the iol locus, a gene cluster in Pseudomonas involved in inositol catabolism, as a feature enriched among superior root colonizers in natural soil. Further characterization revealed that the iol locus increases competitiveness, potentially caused by an observed induction of swimming motility and the production of fluorescent siderophore in response to inositol, a plant-derived compound. Public data analyses indicate that the iol locus is broadly conserved in the Pseudomonas genus and linked to diverse host-microbe interactions. Together, our findings suggest the iol locus as a potential target for developing more effective bioinoculants for sustainable agriculture.
Collapse
Affiliation(s)
- Juan J Sánchez-Gil
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sanne W M Poppeliers
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Hao Zhang
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Bart Odijk
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
12
|
O'Banion BS, Jones P, Demetros AA, Kelley BR, Knoor LH, Wagner AS, Chen JG, Muchero W, Reynolds TB, Jacobson D, Lebeis SL. Plant myo-inositol transport influences bacterial colonization phenotypes. Curr Biol 2023; 33:3111-3124.e5. [PMID: 37419115 DOI: 10.1016/j.cub.2023.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/14/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Plant microbiomes are assembled and modified through a complex milieu of biotic and abiotic factors. Despite dynamic and fluctuating contributing variables, specific host metabolites are consistently identified as important mediators of microbial interactions. We combine information from a large-scale metatranscriptomic dataset from natural poplar trees and experimental genetic manipulation assays in seedlings of the model plant Arabidopsis thaliana to converge on a conserved role for transport of the plant metabolite myo-inositol in mediating host-microbe interactions. While microbial catabolism of this compound has been linked to increased host colonization, we identify bacterial phenotypes that occur in both catabolism-dependent and -independent manners, suggesting that myo-inositol may additionally serve as a eukaryotic-derived signaling molecule to modulate microbial activities. Our data suggest host control of this compound and resulting microbial behavior are important mechanisms at play surrounding the host metabolite myo-inositol.
Collapse
Affiliation(s)
- Bridget S O'Banion
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Piet Jones
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Alexander A Demetros
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Brittni R Kelley
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leah H Knoor
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Andrew S Wagner
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Sarah L Lebeis
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA; DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 38824, USA.
| |
Collapse
|
13
|
Aguilera-Herce J, Panadero-Medianero C, Sánchez-Romero MA, Balbontín R, Bernal-Bayard J, Ramos-Morales F. Salmonella Type III Secretion Effector SrfJ: A Glucosylceramidase Affecting the Lipidome and the Transcriptome of Mammalian Host Cells. Int J Mol Sci 2023; 24:ijms24098403. [PMID: 37176110 PMCID: PMC10179164 DOI: 10.3390/ijms24098403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Type III secretion systems are found in many Gram-negative pathogens and symbionts of animals and plants. Salmonella enterica has two type III secretion systems associated with virulence, one involved in the invasion of host cells and another involved in maintaining an appropriate intracellular niche. SrfJ is an effector of the second type III secretion system. In this study, we explored the biochemical function of SrfJ and the consequences for mammalian host cells of the expression of this S. enterica effector. Our experiments suggest that SrfJ is a glucosylceramidase that alters the lipidome and the transcriptome of host cells, both when expressed alone in epithelial cells and when translocated into macrophages in the context of Salmonella infection. We were able to identify seventeen lipids with higher levels and six lipids with lower levels in the presence of SrfJ. Analysis of the forty-five genes, the expression of which is significantly altered by SrfJ with a fold-change threshold of two, suggests that this effector may be involved in protecting Salmonella from host immune defenses.
Collapse
Affiliation(s)
- Julia Aguilera-Herce
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Concepción Panadero-Medianero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - María Antonia Sánchez-Romero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Roberto Balbontín
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Joaquín Bernal-Bayard
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes, 6, 41012 Sevilla, Spain
| |
Collapse
|
14
|
Siegert W, Sommerfeld V, Schollenberger M, Rodehutscord M. Research Note: Influence of monocalcium phosphate and phytase in the diet on phytate degradation in cecectomized laying hens. Poult Sci 2023; 102:102470. [PMID: 36645959 PMCID: PMC9852950 DOI: 10.1016/j.psj.2022.102470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
This study investigated the effects of phytase and monocalcium phosphate supplementation on the dephosphorylation of phytic acid [myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate); InsP6] in cecectomized laying hens using total excreta collection. Four corn-soybean meal-rapeseed meal-based diets were mixed with or without 6 g of monocalcium phosphate/kg, with or without supplementation of 1,500 FTU phytase/kg, and had the same calcium concentration at 39 g/kg of feed. Each diet was tested in 5 replicates using a row-column design with 10 cecectomized laying hens in 2 periods. The hens received 120 g/d of feed while being housed individually in metabolism units, and total excreta were collected for a period of 4 d. The monocalcium phosphate × phytase interaction was not significant for InsP6 degradation (P = 0.054). Phytase increased InsP6 disappearance from 13% to 83% (P < 0.001), whereas monocalcium phosphate had no effect. Concentrations of most of the lower inositol phosphate isomers in excreta were higher when monocalcium phosphate was added to the diets. The concentration of Ins(1,2,5,6)P4 in excreta was the highest among the studied partially dephosphorylated inositol phosphates with phytase supplementation and was higher than in diets without phytase supplementation (P < 0.001). Supplementation with phytase increased myo-inositol concentration in excreta (P = 0.002), whereas monocalcium phosphate had no effect. Phosphorus utilization ranged from 4% to 18% and was not significantly affected by the treatments. These results suggest that phytase supplementation markedly increased InsP6 degradation in laying hens. The cecectomized laying hen assay may be suitable for studying the effects of phytase supplementation on phytate dephosphorylation under dietary conditions when performance and phosphorus excretion are unlikely to be affected.
Collapse
|
15
|
Sänger PA, Wagner S, Liebler-Tenorio EM, Fuchs TM. Dissecting the invasion of Galleria mellonella by Yersinia enterocolitica reveals metabolic adaptations and a role of a phage lysis cassette in insect killing. PLoS Pathog 2022; 18:e1010991. [PMID: 36399504 PMCID: PMC9718411 DOI: 10.1371/journal.ppat.1010991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
The human pathogen Yersinia enterocolitica strain W22703 is characterized by its toxicity towards invertebrates that requires the insecticidal toxin complex (Tc) proteins encoded by the pathogenicity island Tc-PAIYe. Molecular and pathophysiological details of insect larvae infection and killing by this pathogen, however, have not been dissected. Here, we applied oral infection of Galleria mellonella (Greater wax moth) larvae to study the colonisation, proliferation, tissue invasion, and killing activity of W22703. We demonstrated that this strain is strongly toxic towards the larvae, in which they proliferate by more than three orders of magnitude within six days post infection. Deletion mutants of the genes tcaA and tccC were atoxic for the insect. W22703 ΔtccC, in contrast to W22703 ΔtcaA, initially proliferated before being eliminated from the host, thus confirming TcaA as membrane-binding Tc subunit and TccC as cell toxin. Time course experiments revealed a Tc-dependent infection process starting with midgut colonisation that is followed by invasion of the hemolymph where the pathogen elicits morphological changes of hemocytes and strongly proliferates. The in vivo transcriptome of strain W22703 shows that the pathogen undergoes a drastic reprogramming of central cell functions and gains access to numerous carbohydrate and amino acid resources within the insect. Strikingly, a mutant lacking a phage-related holin/endolysin (HE) cassette, which is located within Tc-PAIYe, resembled the phenotypes of W22703 ΔtcaA, suggesting that this dual lysis cassette may be an example of a phage-related function that has been adapted for the release of a bacterial toxin.
Collapse
Affiliation(s)
| | - Stefanie Wagner
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| | | | - Thilo M. Fuchs
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
- * E-mail:
| |
Collapse
|