1
|
Sundararaman SA, Miller JJ, Daley EC, O’Brien KA, Kasak P, Daniels AM, Edwards RL, Heidel KM, Bague DA, Wilson MA, Koelper AJ, Kourtoglou EC, White AD, August SA, Apple GA, Rouamba RW, Durand AJ, Esteb JJ, Muller FL, Johnson RJ, Hoops GC, Dowd CS, Odom John AR. Prodrug activation in malaria parasites mediated by an imported erythrocyte esterase, acylpeptide hydrolase (APEH). Proc Natl Acad Sci U S A 2025; 122:e2417682122. [PMID: 40035755 PMCID: PMC11912422 DOI: 10.1073/pnas.2417682122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The continued emergence of antimalarial drug resistance highlights the need to develop new antimalarial therapies. Unfortunately, new drug development is often hampered by undesirable drug-like properties of lead compounds. Prodrug approaches temporarily mask undesirable compound features, improving bioavailability and target penetration. We have found that lipophilic diester prodrugs of phosphonic acid antibiotics, such as fosmidomycin (Fsm), exhibit significantly higher antimalarial potency than their parent compounds [R.L. Edwards et al., Sci. Rep. 7, 8400 (2017)]. However, the activating enzymes for these prodrugs were unknown. Here, we show that an erythrocyte enzyme, acylpeptide hydrolase (APEH), is the major activating enzyme of multiple lipophilic ester prodrugs. Surprisingly, this enzyme is taken up by the malaria parasite, Plasmodium falciparum, where it localizes to the parasite cytoplasm and retains enzymatic activity. Using a fluorogenic ester library, we characterize the structure-activity relationship of APEH and compare it to that of P. falciparum esterases. We show that parasite-internalized APEH plays an important role in the activation of substrates with branching at the alpha carbon, in keeping with its exopeptidase activity. Our findings highlight a mechanism for antimicrobial prodrug activation, relying on a host-derived enzyme to yield activation at a microbial target. Mutations in prodrug-activating enzymes are a common mechanism for antimicrobial drug resistance [E. S. Istvan et al., Nat. Commun. 8, 14240 (2017); K. M. V. Sindhe et al., mBio 11, e02640-19 (2020); J. H. Butler et al., Acs Infect Dis. 6, 2994-3003 (2020)]. Leveraging an internalized host enzyme would circumvent this, enabling the design of prodrugs with higher barriers to drug resistance.
Collapse
Affiliation(s)
- Sesh A. Sundararaman
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Justin J. Miller
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA19104
| | - Ellora C. Daley
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Kelsey A. O’Brien
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Paulina Kasak
- College of Health Professions, Thomas Jefferson University, Philadelphia, PA19107
| | - Abigail M. Daniels
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Rachel L. Edwards
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO63110
- Omniose, Saint Louis, MO63110
| | - Kenneth M. Heidel
- Department of Chemistry, George Washington University, Washington, DC20052
| | - Darean A. Bague
- Department of Chemistry, George Washington University, Washington, DC20052
| | - Madeleine A. Wilson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Andrew J. Koelper
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Elexi C. Kourtoglou
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Alex D. White
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Sloan A. August
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Georgia A. Apple
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Regis W. Rouamba
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Anthony J. Durand
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - John J. Esteb
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | | | - R. Jeremy Johnson
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Geoffrey C. Hoops
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN46208
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC20052
| | - Audrey R. Odom John
- Department of Pediatrics, Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
2
|
Liu J, Fike KR, Dapper C, Klemba M. Metabolism of host lysophosphatidylcholine in Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 2024; 121:e2320262121. [PMID: 38349879 PMCID: PMC10895272 DOI: 10.1073/pnas.2320262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using an assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, constitute the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | | | - Christie Dapper
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, VA24061
| |
Collapse
|
3
|
Liu J, Dapper C, Klemba M. Metabolism of host lysophosphatidylcholine in Plasmodium falciparum-infected erythrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537066. [PMID: 37131712 PMCID: PMC10153170 DOI: 10.1101/2023.04.17.537066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human malaria parasite Plasmodium falciparum requires exogenous fatty acids to support its growth during the pathogenic, asexual erythrocytic stage. Host serum lysophosphatidylcholine (LPC) is a significant fatty acid source, yet the metabolic processes responsible for the liberation of free fatty acids from exogenous LPC are unknown. Using a novel assay for LPC hydrolysis in P. falciparum-infected erythrocytes, we have identified small-molecule inhibitors of key in situ lysophospholipase activities. Competitive activity-based profiling and generation of a panel of single-to-quadruple knockout parasite lines revealed that two enzymes of the serine hydrolase superfamily, termed exported lipase (XL) 2 and exported lipase homolog (XLH) 4, are the dominant lysophospholipase activities in parasite-infected erythrocytes. The parasite ensures efficient exogenous LPC hydrolysis by directing these two enzymes to distinct locations: XL2 is exported to the erythrocyte, while XLH4 is retained within the parasite. While XL2 and XLH4 were individually dispensable with little effect on LPC hydrolysis in situ, loss of both enzymes resulted in a strong reduction in fatty acid scavenging from LPC, hyperproduction of phosphatidylcholine, and an enhanced sensitivity to LPC toxicity. Notably, growth of XL/XLH-deficient parasites was severely impaired when cultured in media containing LPC as the sole exogenous fatty acid source. Furthermore, when XL2 and XLH4 activities were ablated by genetic or pharmacologic means, parasites were unable to proliferate in human serum, a physiologically-relevant fatty acid source, revealing the essentiality of LPC hydrolysis in the host environment and its potential as a target for anti-malarial therapy.
Collapse
Affiliation(s)
- Jiapeng Liu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| | - Christie Dapper
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061
| |
Collapse
|