1
|
Nair AV, Singh A, Chakravortty D. Defence Warriors: Exploring the crosstalk between polyamines and oxidative stress during microbial pathogenesis. Redox Biol 2025; 83:103648. [PMID: 40288044 PMCID: PMC12059341 DOI: 10.1016/j.redox.2025.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Microbial infections have been a widely studied area of disease research since historical times, yet they are a cause of severe illness and deaths worldwide. Furthermore, infections by pathogens are not just restricted to humans; instead, a diverse range of hosts, including plants, livestock, marine organisms and fish, cause significant economic losses and pose threats to humans through their transmission in the food chain. It is now believed that both the pathogen and the host contribute to the outcomes of a disease pathology. Researchers have unravelled numerous aspects of host-pathogen interactions, offering valuable insights into the physiological, cellular and molecular processes and factors that contribute to the development of infectious diseases. Polyamines are key factors regulating cellular processes and human ageing and health. However, they are often overlooked in the context of host-pathogen interactions despite playing a dynamic role as a defence molecule from the perspective of the host as well as the pathogen. They form a complex network interacting with several molecules within the cell, with reactive oxygen species being a key component. This review presents a thorough overview of the current knowledge of polyamines and their intricate interactions with reactive oxygen species in the infection of multiple pathogens in diverse hosts. Interestingly, the review covers the interplay of the commensals and pathogen infection involving polyamines and reactive oxygen species, highlighting an unexplored area within this field. From a future perspective, the dynamic interplay of polyamines and oxidative stress in microbial pathogenesis is a fascinating area that widens the scope of developing therapeutic strategies to combat deadly infections.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
2
|
Mishra A, Rawat V, Zhang K, Jagannath C. The pathway of autophagy in the epigenetic landscape of Mycobacterium-host interactions. Autophagy 2025. [PMID: 40413755 DOI: 10.1080/15548627.2025.2511074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 05/18/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
Macroautophagy (autophagy) is an evolutionarily conserved process that degrades excess cytoplasmic components, such as protein aggregates and damaged organelles, by encapsulating them within double-membrane autophagosomes. These autophagosomes undergo distinct stages - initiation, phagophore nucleation, expansion, and closure - before fusing with lysosomes (or occasionally endosomes) for degradation and recycling. This process is regulated by ATG (autophagy related) proteins, which govern autophagosome formation and lysosomal fusion. Epigenetic modifications and transcription factors can regulate ATG gene expression in the nucleus. Autophagy also plays a key role in eliminating intracellular Mycobacterium tuberculosis (Mtb) through the lytic and antimicrobial activities of autolysosomes, which are more potent antimicrobial compartments than conventional phagosomes. Emerging evidence suggests that Mtb can modify the host epigenome and transcriptional machinery, significantly affecting the host immune response. This review explores the epigenetic regulation of autophagy during mycobacterium-host interactions. The interplay between epigenetic regulation and autophagy highlights a crucial aspect of host-pathogen interactions during Mtb infection. Understanding how Mtb manipulates the host epigenome to regulate autophagy could lead to the development of novel therapeutic strategies that enhance autophagic pathways or counteract Mtb's immune evasion tactics.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Varsha Rawat
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Yan L, Niu X, Liang K, Guan F, Yu X, Ye Z, Huang M, Liang H, Zhong X, Zeng J. Assessing the Role of Polyamine Metabolites in Blood and the DNA Methylation of Mycobacterium Tuberculosis in Patients with Multidrug-Resistant Tuberculosis. Int J Med Sci 2025; 22:1762-1772. [PMID: 40225858 PMCID: PMC11983307 DOI: 10.7150/ijms.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/23/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Tuberculosis (TB) is the second largest infectious disease killer in China, and the increasing prevalence of drug-resistant TB patients complicates treatment efforts and raises associated costs. Research on the mechanisms and characteristics of drug-resistant TB contributes to the discovery of new drug targets and the development of new anti-tuberculosis drugs. Methods: In this study, high-performance liquid chromatography (HPLC) was used to detect the content of polyamine metabolites, while western blotting, qPCR and ELISA were used to detect the expression of polyamine metabolism-related enzymes. The Oxford Nanopore Technologies (ONT) sequencing was applied to profile DNA methylation in multidrug-resistant Mycobacterium tuberculosis (Mtb). Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the screened differentially hypermethylated genes. Furthermore, STRING and Cytoscape software were used to construct a protein-protein interaction (PPI) network to identify the key genes. Results: The findings indicated the spermidine (SPD) and polyamine metabolism-related enzymes were elevated in the peripheral blood of TB patients. In addition, the production of polyamines and polyamine metabolism-related enzymes was increased in the peripheral blood of multidrug-resistant tuberculosis (MDR-TB) patients. GO and KEGG analyses showed that the differentially hypermethylated genes were mainly enriched in arginine metabolism. The PPI network analysis identified the top five key genes with the highest degrees: moaX, vapC49, vapB49, highA3 and nuoC. Conclusions: Polyamine metabolites were increased in the peripheral blood of MDR-TB patients. The differentially hypermethylated genes in multidrug-resistant Mtb are involved in the arginine biosynthetic process, the differentially methylated genes may play an important biological role in the multidrug resistance of Mtb.
Collapse
Affiliation(s)
- Li Yan
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Xinxin Niu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Kuidi Liang
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Feifeng Guan
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Xiaolin Yu
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Ziyu Ye
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| | - Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Hancheng Liang
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Xinguang Zhong
- Dongguan Key Laboratory of Tuberculosis Prevention and Control, Dongguan Sixth People's Hospital, Dongguan 523008, Guangdong, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
- Xinghai Institute of Cell, Guangdong Xianhua Institute for Medical Research, Dongguan 523808, Guangdong, China
| |
Collapse
|
4
|
Chauhan S, Nusbaum RJ, Huante MB, Holloway AJ, Endsley MA, Gelman BB, Lisinicchia JG, Endsley JJ. Therapeutic Modulation of Arginase with nor-NOHA Alters Immune Responses in Experimental Mouse Models of Pulmonary Tuberculosis including in the Setting of Human Immunodeficiency Virus (HIV) Co-Infection. Trop Med Infect Dis 2024; 9:129. [PMID: 38922041 PMCID: PMC11209148 DOI: 10.3390/tropicalmed9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
L-arginine metabolism is strongly linked with immunity to mycobacteria, primarily through the antimicrobial activity of nitric oxide (NO). The potential to modulate tuberculosis (TB) outcomes through interventions that target L-arginine pathways are limited by an incomplete understanding of mechanisms and inadequate in vivo modeling. These gaps in knowledge are compounded for HIV and Mtb co-infections, where activation of arginase-1 due to HIV infection may promote survival and replication of both Mtb and HIV. We utilized in vitro and in vivo systems to determine how arginase inhibition using Nω-hydroxy-nor-L-arginine (nor-NOHA) alters L-arginine pathway metabolism relative to immune responses and disease outcomes following Mtb infection. Treatment with nor-NOHA polarized murine macrophages (RAW 264.7) towards M1 phenotype, increased NO, and reduced Mtb in RAW macrophages. In Balb/c mice, nor-NOHA reduced pulmonary arginase and increased the antimicrobial metabolite spermine in association with a trend towards reduced Mtb CFU in lung. In humanized immune system (HIS) mice, HIV infection increased plasma arginase and heightened the pulmonary arginase response to Mtb. Treatment with nor-NOHA increased cytokine responses to Mtb and Mtb/HIV in lung tissue but did not significantly alter bacterial burden or viral load. Our results suggest that L-arginine pathway modulators may have potential as host-directed therapies to augment antibiotics in TB chemotherapy.
Collapse
Affiliation(s)
- Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Rebecca J. Nusbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Matthew B. Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Alex J. Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Mark A. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Joshua G. Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (B.B.G.); (J.G.L.)
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (S.C.); (R.J.N.); (M.B.H.); (A.J.H.); (M.A.E.)
| |
Collapse
|
5
|
Sao Emani C, Reiling N. The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of Mycobacterium tuberculosis against chemical stress. Front Microbiol 2024; 15:1359188. [PMID: 38516013 PMCID: PMC10956863 DOI: 10.3389/fmicb.2024.1359188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background It was previously shown that GlnA3sc enabled Streptomyces coelicolor to survive in excess polyamines. However, subsequent studies revealed that Rv1878, the corresponding Mycobacterium tuberculosis (M.tb) ortholog, was not essential for the detoxification of spermine (Spm), in M.tb. On the other hand, the multi-drug efflux pump Rv1877 was previously shown to enable export of a wide range of compounds, while Rv0191 was shown to be more specific to chloramphenicol. Rationale Therefore, we first wanted to determine if detoxification of Spm by efflux can be achieved by any efflux pump, or if that was dependent upon the function of the pump. Next, since Rv1878 was found not to be essential for the detoxification of Spm, we sought to follow-up on the investigation of the physiological role of Rv1878 along with Rv1877 and Rv0191. Approach To evaluate the specificity of efflux pumps in the mycobacterial tolerance to Spm, we generated unmarked ∆rv1877 and ∆rv0191 M.tb mutants and evaluated their susceptibility to Spm. To follow up on the investigation of any other physiological roles they may have, we characterized them along with the ∆rv1878 M.tb mutant. Results The ∆rv1877 mutant was sensitive to Spm stress, while the ∆rv0191 mutant was not. On the other hand, the ∆rv1878 mutant grew better than the wild-type during iron starvation yet was sensitive to cell wall stress. The proteins Rv1877 and Rv1878 seemed to play physiological roles during hypoxia and acidic stress. Lastly, the ∆rv0191 mutant was the only mutant that was sensitive to oxidative stress. Conclusion The multidrug MFS-type efflux pump Rv1877 is required for Spm detoxification, as opposed to Rv0191 which seems to play a more specific role. Moreover, Rv1878 seems to play a role in the regulation of iron homeostasis and the reconstitution of the cell wall of M.tb. On the other hand, the sensitivity of the ∆rv0191 mutant to oxidative stress, suggests that Rv0191 may be responsible for the transport of low molecular weight thiols.
Collapse
Affiliation(s)
- Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| |
Collapse
|