1
|
Gardner C, Chen J, Hadfield C, Lu Z, Debruin D, Zhan Y, Donlin MJ, Ahn TH, Lin Z. Chromosome-level subgenome-aware de novo assembly provides insight into Saccharomyces bayanus genome divergence after hybridization. Genome Res 2024; 34:2133-2146. [PMID: 39288995 PMCID: PMC11610598 DOI: 10.1101/gr.279364.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Interspecies hybridization is prevalent in various eukaryotic lineages and plays important roles in phenotypic diversification, adaptation, and speciation. To better understand the changes that occurred in the different subgenomes of a hybrid species and how they facilitate adaptation, we have completed chromosome-level de novo assemblies of all chromosomes for a recently formed hybrid yeast, Saccharomyces bayanus strain CBS380, using Oxford Nanopore Technologies' MinION long-read sequencing. We characterize the S. bayanus genome and compare it with its parent species, Saccharomyces uvarum and Saccharomyces eubayanus, and other S. bayanus genomes to better understand genome evolution after a relatively recent hybridization event. We observe multiple recombination events between the subgenomes in each chromosome, followed by loss of heterozygosity (LOH) in nine chromosome pairs. In addition to maintaining nearly all gene content and synteny from its parental genomes, S. bayanus has acquired many genes from other yeast species, primarily through the introgression of Saccharomyces cerevisiae, such as those involved in the maltose metabolism. Finally, the patterns of recombination and LOH suggest an allotetraploid origin of S. bayanus The gene acquisition and rapid LOH in the hybrid genome probably facilitated its adaptation to maltose brewing environments and mitigated the maladaptive effect of hybridization. This paper describes the first in-depth study using long-read sequencing technology of an S. bayanus hybrid genome, which may serve as an excellent reference for future studies of this important yeast and other yeast strains.
Collapse
Affiliation(s)
- Cory Gardner
- Department of Computer Science, Saint Louis University, St. Louis, Missouri 63103, USA
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Junhao Chen
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Christina Hadfield
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Zhaolian Lu
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - David Debruin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Maureen J Donlin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Tae-Hyuk Ahn
- Department of Computer Science, Saint Louis University, St. Louis, Missouri 63103, USA;
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Zhenguo Lin
- Program in Bioinformatics and Computational Biology, Saint Louis University, St. Louis, Missouri 63103, USA;
- Department of Biology, Saint Louis University, Saint Louis University, St. Louis, Missouri 63103, USA
| |
Collapse
|
2
|
Mahar NS, Kohli S, Biswas B, Xess I, Thakur A, Gupta I. Complete genome assembly of Candida auris representative strains of three geographical clades. Microbiol Resour Announc 2024; 13:e0088223. [PMID: 39230279 PMCID: PMC11465752 DOI: 10.1128/mra.00882-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/10/2024] [Indexed: 09/05/2024] Open
Abstract
The complete genome assembly of Candida auris strains B11103, B11221, and B11244 is reported in this manuscript. These strains represent the three geographical clades, namely, South Asian (Clade I), South African (Clade III), and South American (Clade IV).
Collapse
Affiliation(s)
- Nirmal Singh Mahar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Surbhi Kohli
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | | | | | - Anil Thakur
- Regional Center for Biotechnology, Faridabad, Haryana, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
3
|
Garcia JF, Figueroa-Balderas R, Comont G, Delmas CEL, Baumgartner K, Cantu D. Genome analysis of the esca-associated Basidiomycetes Fomitiporia mediterranea, Fomitiporia polymorpha, Inonotus vitis, and Tropicoporus texanus reveals virulence factor repertoires characteristic of white-rot fungi. G3 (BETHESDA, MD.) 2024; 14:jkae189. [PMID: 39141591 PMCID: PMC11457069 DOI: 10.1093/g3journal/jkae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Some Basidiomycete fungi are important plant pathogens, and certain species have been associated with the grapevine trunk disease esca. We present the genomes of 4 species associated with esca: Fomitiporia mediterranea, Fomitiporia polymorpha, Tropicoporus texanus, and Inonotus vitis. We generated high-quality phased genome assemblies using long-read sequencing. The genomic and functional comparisons identified potential virulence factors, suggesting their roles in disease development. Similar to other white-rot fungi known for their ability to degrade lignocellulosic substrates, these 4 genomes encoded a variety of lignin peroxidases and carbohydrate-active enzymes (CAZymes) such as CBM1, AA9, and AA2. The analysis of gene family expansion and contraction revealed dynamic evolutionary patterns, particularly in genes related to secondary metabolite production, plant cell wall decomposition, and xenobiotic degradation. The availability of these genomes will serve as a reference for further studies of diversity and evolution of virulence factors and their roles in esca symptoms and host resistance.
Collapse
Affiliation(s)
- Jadran F Garcia
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
| | - Gwenaëlle Comont
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave d’Ornon, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, 33140 Villenave d’Ornon, France
| | - Kendra Baumgartner
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture—Agricultural Research Service, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA
- Genome Center, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Mo J, Lu M, Mou A, Wang X, Shi W, Zhang X, Xu Q. The mitochondrial genome of Monoserius pennarius (Linnaeus, 1758) from the East China Sea. Mitochondrial DNA B Resour 2024; 9:415-418. [PMID: 38586513 PMCID: PMC10993742 DOI: 10.1080/23802359.2024.2333568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
The species Monoserius pennarius (Linnaeus, 1758), is particularly abundant in the tropical Indo-West Pacific east of Sri Lanka, yet very limited genetic information exists for this species. Here, we report the assembled-linear mitochondrial genome of M. pennarius collected from the East China Sea. The 15,197 bp mitogenome contains 13 protein-coding genes (PCGs), two tRNA genes, and two rRNA genes. Notably, the gene order in this mitogenome differs from that of other hydrozoans within the same taxonomic order. Phylogenetic analysis, based on 13 concatenated mitochondrial PCGs, recovered M. pennarius as a sister of Nemalecium lighti (Hargitt, 1924), outside the other Leptothecata hydrozoans, suggesting paraphyly of Leptothecata. The mitogenome of M. pennarius, serving as the first publicly available for the family Aglaopheniidae, holds foreseeable value for investigating Leptothecata evolution.
Collapse
Affiliation(s)
- Jing Mo
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Min Lu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Anning Mou
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Xuetao Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Wenge Shi
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xuelei Zhang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| | - Qinzeng Xu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
5
|
Ferrer A, Stephens ZD, Kocher JPA. Experimental and Computational Approaches to Measure Telomere Length: Recent Advances and Future Directions. Curr Hematol Malig Rep 2023; 18:284-291. [PMID: 37947937 PMCID: PMC10709248 DOI: 10.1007/s11899-023-00717-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE OF REVIEW The length of telomeres, protective structures at the chromosome ends, is a well-established biomarker for pathological conditions including multisystemic syndromes called telomere biology disorders. Approaches to measure telomere length (TL) differ on whether they estimate average, distribution, or chromosome-specific TL, and each presents their own advantages and limitations. RECENT FINDINGS The development of long-read sequencing and publication of the telomere-to-telomere human genome reference has allowed for scalable and high-resolution TL estimation in pre-existing sequencing datasets but is still impractical as a dedicated TL test. As sequencing costs continue to fall and strategies for selectively enriching telomere regions prior to sequencing improve, these approaches may become a promising alternative to classic methods. Measurement methods rely on probe hybridization, qPCR or more recently, computational methods using sequencing data. Refinements of existing techniques and new approaches have been recently developed but a test that is accurate, simple, and scalable is still lacking.
Collapse
Affiliation(s)
- Alejandro Ferrer
- Division of Hematology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | |
Collapse
|
6
|
Červenák F, Sepšiová R, Peška V, Nosek J, Tomáška Ľ. Primary Scientific Literature Represents an Essential Source of Telomeric Repeat Sequences. Microbiol Spectr 2023; 11:e0123023. [PMID: 37310973 PMCID: PMC10433822 DOI: 10.1128/spectrum.01230-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Affiliation(s)
- Filip Červenák
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vratislav Peška
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
7
|
Sun Q, Wang H, Tao S, Xi X. Reply to Červenák et al., "Primary Scientific Literature Represents an Essential Source of Telomeric Repeat Sequences". Microbiol Spectr 2023; 11:e0153323. [PMID: 37310265 PMCID: PMC10433865 DOI: 10.1128/spectrum.01533-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Affiliation(s)
- Qing Sun
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiheng Tao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuguang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, LBPA, Gif-sur-Yvette, France
| |
Collapse
|