1
|
Wang Y, Sholeh M, Yang L, Shakourzadeh MZ, Beig M, Azizian K. Global trends of ceftazidime-avibactam resistance in gram-negative bacteria: systematic review and meta-analysis. Antimicrob Resist Infect Control 2025; 14:10. [PMID: 39934901 DOI: 10.1186/s13756-025-01518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance in Gram-negative bacteria (GNB) is a major global concern. Ceftazidime-avibactam (CAZ-AVI) has been identified as a potential treatment option for complicated infections. OBJECTIVES This meta-analysis aimed to evaluate the global resistance proportions of GNB to CAZ-AVI comprehensively. METHODS Studies were searched in Scopus, PubMed, and EMBASE (until September 2024), and statistical analyses were conducted using STATA software (version 20.0). RESULTS CAZ-AVI resistance proportions were determined in 136 studies, with 25.8% (95% CI 22.2-29.7) for non-fermentative gram-negative bacilli and 6.1% (95% CI 4.9-7.4) for Enterobacterales. The CAZ-AVI resistance proportion significantly increased from 5.6% (95% CI 4.1-7.6) of 221,278 GNB isolates in 2015-2020 to 13.2% (95% CI 11.4-15.2) of 285,978 GNB isolates in 2021-2024. Regionally, CAZ-AVI resistance was highest in Asia 19.3% (95% CI 15.7-24.23.4), followed by Africa 13.6% (95% CI 5.6-29.2), Europe 11% (95% CI 7.8-15.2), South America 6.1% (95% CI 3.2-11.5) and North America 5.3% (95% CI 4.2-6.7). Among GNB resistance profiles, colistin-resistant isolates and XDR isolates exhibited the highest resistance proportions (37.1%, 95% CI 14-68 and 32.1%, 95% CI 18.5-49.6), respectively), followed by carbapenem-resistant isolates and MDR isolates [(25.8%, 95% CI 22.6-29.3) and (13%, 95% CI 9.6, 17.3)]. CONCLUSION A high proportion of GNB isolates from urinary tract infections remained susceptible to CAZ-AVI, indicating its potential as a suitable treatment option. However, the increasing resistance trends among GNB are concerning and warrant continuous monitoring to maintain CAZ-AVI's effectiveness against GNB infections.
Collapse
Affiliation(s)
- Yang Wang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - LunDi Yang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China.
| | - Matin Zafar Shakourzadeh
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgān, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Dallal Bashi YH, Mairs R, Murtadha R, Kett V. Pulmonary Delivery of Antibiotics to the Lungs: Current State and Future Prospects. Pharmaceutics 2025; 17:111. [PMID: 39861758 PMCID: PMC11768398 DOI: 10.3390/pharmaceutics17010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
This paper presents a comprehensive review of the current literature, clinical trials, and products approved for the delivery of antibiotics to the lungs. While there are many literature reports describing potential delivery systems, few of these have translated into marketed products. Key challenges remaining are the high doses required and, for powder formulations, the ability of the inhaler and powder combination to deliver the dose to the correct portion of the respiratory tract for maximum effect. Side effects, safety concerns, and disappointing clinical trial results remain barriers to regulatory approval. In this review, we describe some possible approaches to address these issues and highlight prospects in this area.
Collapse
Affiliation(s)
- Yahya H Dallal Bashi
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
- College Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rachel Mairs
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Rand Murtadha
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Vicky Kett
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
3
|
Kany AM, Fries F, Seyfert CE, Porten C, Deckarm S, Chacón Ortiz M, Dubarry N, Vaddi S, Große M, Bernecker S, Sandargo B, Müller AV, Bacqué E, Stadler M, Herrmann J, Müller R. In Vivo Activity Profiling of Biosynthetic Darobactin D22 against Critical Gram-Negative Pathogens. ACS Infect Dis 2024; 10:4337-4346. [PMID: 39565008 DOI: 10.1021/acsinfecdis.4c00687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In recent years, naturally occurring darobactins have emerged as a promising compound class to combat infections caused by critical Gram-negative pathogens. In this study, we describe the in vivo evaluation of derivative D22, a non-natural biosynthetic darobactin analogue with significantly improved antibacterial activity. We found D22 to be active in vivo against key critical Gram-negative human pathogens, as demonstrated in murine models of Pseudomonas aeruginosa thigh infection, Escherichia coli peritonitis/sepsis, and urinary tract infection (UTI). Furthermore, we observed the restored survival of Acinetobacter baumannii-infected embryos in a zebrafish infection model. These in vivo proof-of-concept (PoC) in diverse models of infection against highly relevant pathogens, including drug-resistant isolates, highlight the versatility of darobactins in the treatment of bacterial infections and show superiority of D22 over the natural darobactin A. Together with a favorable safety profile, these findings pave the way for further optimization of the darobactin scaffold toward the development of a novel antibiotic.
Collapse
Affiliation(s)
- Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Franziska Fries
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Carsten E Seyfert
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | - Christoph Porten
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Selina Deckarm
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - María Chacón Ortiz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
| | | | | | - Miriam Große
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Steffen Bernecker
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Birthe Sandargo
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
| | - Alison V Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | | | - Marc Stadler
- Helmholtz Centre for Infection Research (HZI), Department Microbial Drugs, Braunschweig 38124, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken 66123, Germany
- Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) e.V., Braunschweig 38124, Germany
- Helmholtz International Lab for Anti-infectives, Saarbrücken 66123, Germany
| |
Collapse
|
4
|
Dutta A, Sharma P, Dass D, Yarlagadda V. Exploring the Darobactin Class of Antibiotics: A Comprehensive Review from Discovery to Recent Advancements. ACS Infect Dis 2024; 10:2584-2599. [PMID: 39028949 DOI: 10.1021/acsinfecdis.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The prevalence of antimicrobial resistance in Gram-negative bacteria poses a greater challenge due to their intrinsic resistance to many antibiotics. Recently, darobactins have emerged as a novel class of antibiotics originating from previously unexplored Gram-negative bacterial species such as Photorhabdus, Vibrio, Pseudoalteromonas and Yersinia. Darobactins belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) class of antibiotics, exhibiting selective activity against Gram-negative bacteria. They target the β-barrel assembly machinery (BAM), which is crucial for the maturation and insertion of outer membrane proteins in Gram-negative bacteria. The dar operon in the producer's genome encodes for the synthesis of darobactins, which are characterized by a fused ring system connected via an alkyl-aryl ether linkage (C-O-C) and a C-C cross-link. The enzyme DarE, using the radical S-adenosyl-l-methionine (rSAM), facilitates the formation of these bonds. Biosynthetic manipulation of the darobactin gene cluster, along with its expression in a surrogate host, has enabled access to diverse darobactin analogues with variable antibiotic activities. Recently, two independent research groups successfully achieved the total synthesis of darobactin, employing Larock heteroannulation to construct the bicyclic structure. This paper presents a comprehensive review of darobactins, encompassing their discovery through to the most recent advancements.
Collapse
Affiliation(s)
- Akash Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Peehu Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dharam Dass
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | |
Collapse
|
5
|
Maruri-Aransolo A, López-Causapé C, Hernández-García M, García-Castillo M, Caballero-Pérez JDD, Oliver A, Cantón R. In vitro activity of cefiderocol in Pseudomonas aeruginosa isolates from people with cystic fibrosis recovered during three multicentre studies in Spain. J Antimicrob Chemother 2024; 79:1432-1440. [PMID: 38708553 DOI: 10.1093/jac/dkae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES Despite the introduction of cystic fibrosis transmembrane conductance regulator (CFTR) modulators, Pseudomonas aeruginosa is still a major pathogen in people with cystic fibrosis (pwCF). We determine the activity of cefiderocol and comparators in a collection of 154 P. aeruginosa isolates recovered from pwCF during three multicentre studies performed in 17 Spanish hospitals in 2013, 2017 and 2021. METHODS ISO broth microdilution was performed and MICs were interpreted with CLSI and EUCAST criteria. Mutation frequency and WGS were also performed. RESULTS Overall, 21.4% were MDR, 20.8% XDR and 1.3% pandrug-resistant (PDR). Up to 17% of the isolates showed a hypermutator phenotype. Cefiderocol demonstrated excellent activity; only 13 isolates (8.4%) were cefiderocol resistant by EUCAST (none using CLSI). A high proportion of the isolates resistant to ceftolozane/tazobactam (71.4%), meropenem/vaborbactam (70.0%), imipenem/relebactam (68.0%) and ceftazidime/avibactam (55.6%) were susceptible to cefiderocol. Nine out of 13 cefiderocol-resistant isolates were hypermutators (P < 0.001). Eighty-three STs were detected, with ST98 being the most frequent. Only one isolate belonging to the ST175 high-risk clone carried blaVIM-2. Exclusive mutations affecting genes involved in membrane permeability, AmpC overexpression (L320P-AmpC) and efflux pump up-regulation were found in cefiderocol-resistant isolates (MIC = 4-8 mg/L). Cefiderocol resistance could also be associated with mutations in genes related to iron uptake (tonB-dependent receptors and pyochelin/pyoverdine biosynthesis). CONCLUSIONS Our results position cefiderocol as a therapeutic option in pwCF infected with P. aeruginosa resistant to most recent β-lactam/β-lactamase inhibitor combinations.
Collapse
Affiliation(s)
- Ainhize Maruri-Aransolo
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario de Son Espases and (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - María García-Castillo
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan de Dios Caballero-Pérez
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario de Son Espases and (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Tunney MM, Elborn JS, McLaughlin CS, Longshaw CM. In vitro activity of cefiderocol against Gram-negative pathogens isolated from people with cystic fibrosis and bronchiectasis. J Glob Antimicrob Resist 2024; 36:407-410. [PMID: 38336228 DOI: 10.1016/j.jgar.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Gram-negative pathogens causing respiratory infection in people with cystic fibrosis and bronchiectasis are becoming progressively more resistant to conventional antibiotics. Although cefiderocol is licenced for the treatment of infections due to Gram-negative organisms, there are limited data on the activity of cefiderocol against pathogens associated with chronic respiratory diseases. The aim of this study was to determine the susceptibility of Gram-negative pathogens from cystic fibrosis and bronchiectasis to cefiderocol and comparator antibiotics. METHODS Minimal inhibitory concentrations (MICs) of cefiderocol and 15 comparator antibiotics were determined by broth microdilution against 300 respiratory isolates: Burkholderia spp., Stenotrophomonas spp., Achromobacter spp., Ralstonia spp. and Pandoraea spp., and used to calculate the MIC of each antibiotic required to inhibit 50% (MIC50) and 90% (MIC90) of isolates. RESULTS The MIC50 and MIC90 of cefiderocol for all 300 isolates tested was 0.25 and 32 mg/L, with 232 (77.3%) isolates having an MIC value ≤2 mg/L. In addition, cefiderocol demonstrated excellent activity against Stenotrophomonas spp. and Achromobacter spp. isolates, with 86.7% and 87.2%, respectively, exhibiting an MIC of 2 mg/L. Tigecycline also demonstrated good activity against all isolates with an MIC50 of <0.5 mg/L. CONCLUSIONS These in vitro data demonstrated that cefiderocol had greater activity than most comparator antibiotics and could be an alternative treatment option for respiratory infection caused by these pathogens that has not responded to first-line therapy.
Collapse
Affiliation(s)
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
7
|
Karakonstantis S, Rousaki M, Vassilopoulou L, Kritsotakis EI. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: a systematic review and meta-analysis. Clin Microbiol Infect 2024; 30:178-188. [PMID: 37666449 DOI: 10.1016/j.cmi.2023.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Cefiderocol is a last resort option for carbapenem-resistant (CR) Gram-negative bacteria, especially metallo-β-lactamase-producing Pseudomonas aeruginosa and CR Acinetobacter baumannii. Monitoring global levels of cefiderocol non-susceptibility (CFDC-NS) is important. OBJECTIVES To systematically collate and examine studies investigating in vitro CFDC-NS and estimate the global prevalence of CFDC-NS against major Gram-negative pathogens. DATA SOURCES PubMed and Scopus, up to May 2023. STUDY ELIGIBILITY CRITERIA Eligible were studies reporting CFDC-NS in Enterobacterales, P. aeruginosa, A. baumannii, or Stenotrophomonas maltophilia clinical isolates. RISK-OF-BIAS ASSESSMENT Two independent reviewers extracted study data and assessed the risk of bias on the population, setting, and measurement (susceptibility testing) domains. DATA SYNTHESIS Binomial-Normal mixed-effects models were applied to estimate CFDC-NS prevalence by species, coresistance phenotype, and breakpoint definition (EUCAST, CLSI, and FDA). Sources of heterogeneity were investigated by subgroup and meta-regression analyses. RESULTS In all, 78 studies reporting 82 035 clinical isolates were analysed (87% published between 2020 and 2023). CFDC-NS prevalence (EUCAST breakpoints) was low overall but varied by species (S. maltophilia 0.4% [95% CI 0.2-0.7%], Enterobacterales 3.0% [95% CI 1.5-6.0%], P. aeruginosa 1.4% [95% CI 0.5-4.0%]) and was highest for A. baumannii (8.8%, 95% CI 4.9-15.2%). CFDC-NS was much higher in CR Enterobacterales (12.4%, 95% CI 7.3-20.0%) and CR A. baumannii (13.2%, 95% CI 7.8-21.5%), but relatively low for CR P. aeruginosa (3.5%, 95% CI 1.6-7.8%). CFDC-NS was exceedingly high in New Delhi metallo-β-lactamase-producing Enterobacterales (38.8%, 95% CI 22.6-58.0%), New Delhi metallo-β-lactamase-producing A. baumannii (44.7%, 95% CI 34.5-55.4%), and ceftazidime/avibactam-resistant Enterobacterales (36.6%, 95% CI 22.7-53.1%). CFDC-NS varied considerably with breakpoint definition, predominantly among CR bacteria. Additional sources of heterogeneity were single-centre investigations and geographical regions. CONCLUSIONS CFDC-NS prevalence is low overall, but alarmingly high for specific CR phenotypes circulating in some institutions or regions. Continuous surveillance and updating of global CFDC-NS estimates are imperative while cefiderocol is increasingly introduced into clinical practice. The need to harmonize EUCAST and CLSI breakpoints was evident.
Collapse
Affiliation(s)
- Stamatis Karakonstantis
- Internal Medicine Department, Infectious Diseases Division, University Hospital of Heraklion, Crete, Greece
| | - Maria Rousaki
- Master of Public Health Program, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Loukia Vassilopoulou
- 2nd Department of Internal Medicine, Venizeleio-Pananeio General Hospital, Heraklion, Crete, Greece
| | - Evangelos I Kritsotakis
- Laboratory of Biostatistics, Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece; School of Health and Related Research, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK.
| |
Collapse
|
8
|
Seyfert C, Müller AV, Walsh DJ, Birkelbach J, Kany AM, Porten C, Yuan B, Krug D, Herrmann J, Marlovits TC, Hirsch AKH, Müller R. New Genetically Engineered Derivatives of Antibacterial Darobactins Underpin Their Potential for Antibiotic Development. J Med Chem 2023; 66:16330-16341. [PMID: 38093695 PMCID: PMC10726357 DOI: 10.1021/acs.jmedchem.3c01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Biosynthetic engineering of bicyclic darobactins, selectively sealing the lateral gate of the outer membrane protein BamA, leads to active analogues, which are up to 128-fold more potent against Gram-negative pathogens compared to native counterparts. Because of their excellent antibacterial activity, darobactins represent one of the most promising new antibiotic classes of the past decades. Here, we present a series of structure-driven biosynthetic modifications of our current frontrunner, darobactin 22 (D22), to investigate modifications at the understudied positions 2, 4, and 5 for their impact on bioactivity. Novel darobactins were found to be highly active against critical pathogens from the WHO priority list. Antibacterial activity data were corroborated by dissociation constants with BamA. The most active derivatives D22 and D69 were subjected to ADMET profiling, showing promising features. We further evaluated D22 and D69 for bioactivity against multidrug-resistant clinical isolates and found them to have strong activity.
Collapse
Affiliation(s)
- Carsten
E. Seyfert
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
| | - Alison V. Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
| | - Danica J. Walsh
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
| | - Joy Birkelbach
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
| | - Andreas M. Kany
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
| | - Christoph Porten
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
| | - Biao Yuan
- Institute
of Structural and Systems Biology and Centre for Structural Systems
Biology (CSSB), University Medical Center
Hamburg-Eppendorf (UKE), Hamburg 22607, Germany
- Deutsches
Elektronen-Synchrotron Zentrum (DESY), Hamburg 22607, Germany
- Centre for
Structural Systems Biology (CSSB), Hamburg 22607, Germany
| | - Daniel Krug
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
| | - Jennifer Herrmann
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
| | - Thomas C. Marlovits
- Institute
of Structural and Systems Biology and Centre for Structural Systems
Biology (CSSB), University Medical Center
Hamburg-Eppendorf (UKE), Hamburg 22607, Germany
- Deutsches
Elektronen-Synchrotron Zentrum (DESY), Hamburg 22607, Germany
- Centre for
Structural Systems Biology (CSSB), Hamburg 22607, Germany
| | - Anna K. H. Hirsch
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
- Helmholtz
International Lab for Anti-Infectives, Saarbrücken 66123, Germany
| | - Rolf Müller
- Helmholtz
Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre
for Infection Research (HZI) and Saarland University Department of
Pharmacy, Saarbrücken 66123, Germany
- German
Centre for Infection Research (DZIF),
partner site, Hannover, Braunschweig 38124, Germany
- Helmholtz
International Lab for Anti-Infectives, Saarbrücken 66123, Germany
| |
Collapse
|
9
|
Monogue ML, Desai D, Pybus CA, Sanders JM, Clark AE, Greenberg DE. In vitro activity of cefiderocol against Pseudomonas aeruginosa isolated from cystic fibrosis patients. Microbiol Spectr 2023; 11:e0304723. [PMID: 37982634 PMCID: PMC10714955 DOI: 10.1128/spectrum.03047-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Affiliation(s)
- Marguerite L. Monogue
- Department of Pharmacy, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Infectious Diseases, and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dhara Desai
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christine A. Pybus
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James M. Sanders
- Department of Pharmacy, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, Infectious Diseases, and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew E. Clark
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E. Greenberg
- Department of Internal Medicine, Infectious Diseases, and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Xu XM, Pan CY, Zeng DL. Clinical pharmacists' involvement in carbapenem antibiotics management at Wenzhou Integrated Hospital. World J Clin Cases 2023; 11:7302-7308. [PMID: 37969451 PMCID: PMC10643060 DOI: 10.12998/wjcc.v11.i30.7302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Carbapenem antibiotics are a pivotal solution for severe infections, particularly in hospital settings. The emergence of carbapenem-resistant bacteria owing to the irrational and extensive use of carbapenems underscores the need for meticulous management and rational use. Clinical pharmacists, with their specialized training and extensive knowledge, play a substantial role in ensuring the judicious use of carbapenem. This study aimed to elucidate the patterns of carbapenem use and shed light on the integral role played by clinical pharmacists in managing and promoting the rational use of carbapenem antibiotics at Wenzhou Integrated Traditional Chinese and Western Medicine Hospital. AIM To analyze carbapenem use patterns in our hospital and role of clinical pharmacists in managing and promoting their rational use. METHODS We performed a retrospective analysis of carbapenem use at our hospital between January 2019 and December 2021. Several key indicators, including the drug utilization index, defined daily doses (DDDs), proportion of antimicrobial drug costs to total hospitalization expenses, antibiotic utilization density, and utilization rates in different clinical departments were comprehensively analyzed. RESULTS Between 2019 and 2021, there was a consistent decline in the consumption and sales of imipenem-cilastatin sodium, meropenem (0.3 g), and meropenem (0.5 g). Conversely, the DDDs of imipenem-cilastatin sodium for injection increased in 2020 and 2021 vs 2019, with a B/A value of 0.67, indicating a relatively higher drug cost. The DDDs of meropenem for injection (0.3 g) exhibited an overall upward trend, indicating an increasing clinical preference. However, the B/A values for 2020 and 2021 were both > 1, suggesting a relatively lower drug cost. The DDDs of meropenem for injection (0.5 g) demonstrated a progressive increase annually and consistently ranked first, indicating a high clinical preference with a B/A value of 1, signifying good alignment between economic and social benefits. CONCLUSION Carbapenem use in our hospital was generally reasonable with a downward trend in consumption and sales over time. Clinical pharmacists play a pivotal role in promoting appropriate use of carbapenems.
Collapse
Affiliation(s)
- Xue-Mei Xu
- Department of Pharmacy, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, Zhejiang Province, China
| | - Cai-Yu Pan
- Department of Pharmacy, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, Zhejiang Province, China
| | - Da-Li Zeng
- Department of Pharmacy, Wenzhou Integrated Traditional Chinese and Western Medicine Hospital, Wenzhou 325000, Zhejiang Province, China
| |
Collapse
|
11
|
Dulek DE. Update on Epidemiology and Outcomes of Infection in Pediatric Organ Transplant Recipients. Infect Dis Clin North Am 2023; 37:561-575. [PMID: 37532391 DOI: 10.1016/j.idc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Pediatric solid organ transplant (SOT) recipients are at risk for infection following transplantation. Data from adult SOT recipients are often used to guide prevention and treatment of infections associated with organ transplantation in children. This article highlights key recent pediatric SOT-specific publications for an array of infectious complications of organ transplantation. Attention is given to areas of need for future study.
Collapse
Affiliation(s)
- Daniel E Dulek
- Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
| |
Collapse
|
12
|
Mengistu A, Naimuddin M, Abebe B. Optically amended biosynthesized crystalline copper-doped ZnO for enhanced antibacterial activity. RSC Adv 2023; 13:24835-24845. [PMID: 37608973 PMCID: PMC10440632 DOI: 10.1039/d3ra04488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
The emergence and re-emergence of antibiotic-resistant bacteria is a potential threat to treating infectious diseases. This study employed a nanometer-scale green synthesis using an extract of Solanum incanum leaves to obtain nanoparticles (NPs) and nanocomposites (NCs) possessing antibacterial properties. The FESEM-EDS elemental mapping analysis proved the novelty of the green synthesis approach in synthesizing a copper-doped ZnO NCs with good dopant distribution. The crystallinity and ZnO bandgap were adjusted by extrinsic copper doping in the ZnO lattice. The optical property adjustments from 3.04 to 2.97 eV for indirect Kubelka-Munk functions were confirmed from DRS-UV-vis analysis. The dopant inclusion in the host lattice was also confirmed by the angle shift on the XRD pattern analysis relative to single ZnO. In addition to doping, the XRD pattern analysis also showed the development of CuO crystals. The lattice fringe values from HRTEM analysis confirmed the existence of both CuO and ZnO crystals with local heterojunctions. Doping and heterojunctions have crucial values in charge transfer and visible light harvesting behaviour, as proved by the PL analysis. The synergistic effects of the doped NCs showed greater antibacterial activity against both Gram-positive and Gram-negative bacteria as a result of more ROS generation through the bacteria-cell-catalyst interaction and release of metal ions. The antioxidant potential of the doped NCs was found to be higher than that of single NPs, using the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay and is expected to impart protective effects to the host cells by scavenging destructive free radicals. Thus, the overall analysis leads to the conclusion that the potentiality of synthesized materials has a future outlook for biological applications, especially in the development of antimicrobials to combat antibiotic-resistant bacteria and microbes.
Collapse
Affiliation(s)
- Adam Mengistu
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University P.O. Box:1888 Adama Ethiopia
| | - Mohammed Naimuddin
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University P.O. Box:1888 Adama Ethiopia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P.O. Box:1888 Adama Ethiopia
| |
Collapse
|
13
|
Venuti F, Romani L, De Luca M, Tripiciano C, Palma P, Chiriaco M, Finocchi A, Lancella L. Novel Beta Lactam Antibiotics for the Treatment of Multidrug-Resistant Gram-Negative Infections in Children: A Narrative Review. Microorganisms 2023; 11:1798. [PMID: 37512970 PMCID: PMC10385558 DOI: 10.3390/microorganisms11071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Infections due to carbapenem-resistant Enterobacterales (CRE) are increasingly prevalent in children and are associated with poor clinical outcomes, especially in critically ill patients. Novel beta lactam antibiotics, including ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol, have been released in recent years to face the emerging challenge of multidrug-resistant (MDR) Gram-negative bacteria. Nonetheless, several novel agents lack pediatric indications approved by the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), leading to uncertain pediatric-specific treatment strategies and uncertain dosing regimens in the pediatric population. In this narrative review we have summarized the available clinical and pharmacological data, current limitations and future prospects of novel beta lactam antibiotics in the pediatric population.
Collapse
Affiliation(s)
- Francesco Venuti
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Amedeo di Savoia Hospital, 10149 Torino, Italy
| | - Lorenza Romani
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Maia De Luca
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Costanza Tripiciano
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Paolo Palma
- Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Chiriaco
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Finocchi
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Laura Lancella
- Infectious Disease Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
14
|
Al-Zubairy SA. Microbiologic Cure with a Simplified Dosage of Intravenous Colistin in Adults: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:4237-4249. [PMID: 37404254 PMCID: PMC10317528 DOI: 10.2147/idr.s411381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
Purpose Colistin's FDA weight-based dosing (WBD) and frequency are both expressed in a broad range. Therefore, a simplified fixed-dose regimen (SFDR) of intravenous colistin based on three body-weight segments has been established for adults. The SFDR falls within the WBD range of each body-weight segment and accounts for the pharmacokinetic features. This study compared microbiologic cure with colistin SFDR to WBD in critically ill adults. Patients and Methods A retrospective cohort study was conducted for colistin orders from January 2014 to February 2022. The study included ICU patients who received intravenous colistin for carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections. Patients received the SFDR after the protocol was implemented, as the WBD was previously used. The primary endpoint was microbiologic cure. Secondary endpoints were 30-day infection recurrence and acute kidney injury (AKI). Results Of the 228 screened patients, 84 fulfilled the inclusion and matching criteria (42 in each group). The microbiologic cure rate was 69% with the SFDR and 36% with the WBD [p=0.002]. Infection recurred in four of the 29 patients who had a microbiologic cure with the SFDR (14%), and in six of the 15 patients with WBD (40%); [p=0.049]. AKI occurred in seven of the 36 SFDR patients who were not on hemodialysis (19%) and 15 of the 33 WBD patients (46%); [p=0.021]. Conclusion In this study, colistin SFDR was associated with a higher microbiologic cure in carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections and with a lower incidence of AKI in critically ill adults compared to WBD.
Collapse
|
15
|
Poggi C, Dani C. New Antimicrobials for the Treatment of Neonatal Sepsis Caused by Multi-Drug-Resistant Bacteria: A Systematic Review. Antibiotics (Basel) 2023; 12:956. [PMID: 37370275 DOI: 10.3390/antibiotics12060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Infections by multi-drug-resistant (MDR) organisms are sharply increasing in newborns worldwide. In low and middle-income countries, a disproportionate amount of neonatal sepsis caused by MDR Gram negatives was recently reported. Newborns with infections by MDR organisms with limited treatment options may benefit from novel antimicrobials. METHODS We performed a literature search investigating the use in newborns, infants and children of novel antimicrobials for the treatment of MDR Gram negatives, namely ceftazidime/avibactam, ceftolozane/tazobactam, cefiderocol, meropenem/vaborbactam, imipenem/relebactam, and Gram positives with resistance of concern, namely ceftaroline and dalbavancin. PubMed, EMBASE, and Web of Science were searched. RESULTS A total of 50 records fulfilled the inclusion criteria. Most articles were case reports or case series, and ceftazidime/avibactam was the most studied agent. All studies showed favorable efficacy and safety profile in newborns and across different age cohorts. CONCLUSIONS novel antibiotics may be considered in newborns for the treatment of MDR Gram negatives with limited treatment options and for Gram positives with resistance concerns. Further studies are needed to address their effectiveness and safety in newborns.
Collapse
Affiliation(s)
- Chiara Poggi
- Neonatal Intensive Care Unit, Department of Mother and Child Care, Careggi University Hospital, 50141 Florence, Italy
| | - Carlo Dani
- Neonatal Intensive Care Unit, Department of Mother and Child Care, Careggi University Hospital, 50141 Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, 50141 Florence, Italy
| |
Collapse
|
16
|
Stelitano G, Cocorullo M, Mori M, Villa S, Meneghetti F, Chiarelli LR. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand? Int J Mol Sci 2023; 24:ijms24076181. [PMID: 37047161 PMCID: PMC10094389 DOI: 10.3390/ijms24076181] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) infections is one of the most crucial challenges currently faced by the scientific community. Developments in the fundamental understanding of their underlying mechanisms may open new perspectives in drug discovery. In this review, we conducted a systematic literature search in PubMed, Web of Science, and Scopus, to collect information on innovative strategies to hinder iron acquisition in bacteria. In detail, we discussed the most interesting targets from iron uptake and metabolism pathways, and examined the main chemical entities that exhibit anti-infective activities by interfering with their function. The mechanism of action of each drug candidate was also reviewed, together with its pharmacodynamic, pharmacokinetic, and toxicological properties. The comprehensive knowledge of such an impactful area of research will hopefully reflect in the discovery of newer antibiotics able to effectively tackle the antimicrobial resistance issue.
Collapse
|