1
|
Heckler EP, Ali L, Bhattarai S, Cagle-White B, Smith NC, Moore ED, Coover RA, Abdel Aziz MH, Sarkar A. A benzoxazolyl urea inhibits VraS and enhances antimicrobials against vancomycin intermediate-resistant Staphylococcus aureus. Bioorg Med Chem Lett 2025; 120:130113. [PMID: 39880176 DOI: 10.1016/j.bmcl.2025.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/04/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Vancomycin intermediate-resistant Staphylococcus aureus (VISA) is a pathogen of concern. VraS, a histidine kinase, facilitates the VISA phenotype. Here, we reveal a benzoxazolyl urea (chemical 1) that directly inhibits VraS and enhances vancomycin to below the clinical breakpoint against an archetypal VISA strain, Mu50. 50 μM of 1 enhances vancomycin 16-fold to 0.25 μg/mL. The MIC of oxacillin is enhanced 32-fold to 8 μg/mL, only slightly above its clinical breakpoint. The chemical also showed promising enhancement of oxacillin against several MRSA strains. 1 shows ∼30 % inhibition of ATPase activity in VraS and reduces vra gene auto-upregulation typical upon vancomycin exposure. Therefore, 1 inhibits VraS to block normal vra operon function, leading to potent enhancement of cell wall-directed antibiotics. Interestingly, a molecular modeling approach suggests 1 does not displace ATP from the active site, but acts elsewhere. While VraS inhibitors have previously been reported to function against MRSA, to the best of our knowledge, this is the first direct VraS inhibitor ever reported that shows significant enhancement of vancomycin against VISA.
Collapse
Affiliation(s)
- Emerson P Heckler
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Liaqat Ali
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Shrijan Bhattarai
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Brittnee Cagle-White
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA
| | - Nickalus C Smith
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - Erik D Moore
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Robert A Coover
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA
| | - May H Abdel Aziz
- Department of Pharmaceutical Sciences and Health Outcomes, Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, TX, USA.
| | - Aurijit Sarkar
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA; Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA.
| |
Collapse
|
2
|
Ali L, Karki S, Boorgula GD, Mekakda A, Cagle-White B, Bhattarai S, Beaudoin R, Blakeney A, Singh S, Srivastava S, Abdel Aziz MH. A mechanistic understanding of the effect of Staphylococcus aureus VraS histidine kinase single-point mutation on antibiotic resistance. Microbiol Spectr 2025; 13:e0009525. [PMID: 40233945 PMCID: PMC12054033 DOI: 10.1128/spectrum.00095-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Bacterial genomic mutations in Staphylococcus aureus have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. Resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain-of-function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in S. aureus. VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis. A combination of enzyme kinetics, microbiological, and transcriptomic analyses revealed the mechanistic effect of the mutation on VraS and S. aureus. Michaelis-Menten kinetics show that the VraS mutation caused an increase in the autophosphorylation rate of VraS and enhanced its catalytic efficiency. The introduction of the mutation through recombineering coupled with CRISPR-Cas9 counterselection to the Newman strain wild-type (WT) genome doubled the minimum inhibitory concentration of three cell wall-targeting antibiotics. The mutation caused an enhanced S. aureus growth rate at sub-lethal doses of the antibiotics, confirming the causative effect of the mutation on bacterial persistence. Transcriptomic analysis showed a genome-wide alteration in gene expression levels and protein-protein interaction network of the mutant compared to the WT strain after exposure to vancomycin. The results suggest that the vraS mutation causes several mechanistic changes at the protein and cellular levels that favor bacterial survival under antibiotic stress and cause the mutation-harboring strains to become the dominant population during infection.IMPORTANCERising antimicrobial resistance (AMR) is a global health problem. Mutations in the two-component system have been linked to drug resistance in Staphylococcus aureus, yet the exact mechanism through which these mutations work is understudied. We investigated the T331I mutation in the vraS gene linked to sensing and responding to cell wall stress. The mutation caused changes at the protein level by increasing the catalytic efficiency of VraS kinase activity. Introducing the mutation to the genome of an S. aureus strain resulted in changes in phenotypic antibiotic susceptibility, growth kinetics, and genome-wide transcriptomic alterations. By a combination of enzyme kinetics, microbiological, and transcriptomic approaches, we highlight how small genetic changes can significantly impact bacterial physiology and survival under antibiotic stress. Understanding the mechanistic basis of antibiotic resistance is crucial to guide the development of novel therapeutic agents to combat AMR.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas, USA
| | - Salima Karki
- Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas, USA
| | - Gunavanthi D. Boorgula
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | - Amir Mekakda
- Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas, USA
| | | | - Shrijan Bhattarai
- Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas, USA
| | - Robert Beaudoin
- Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas, USA
| | - Aryanna Blakeney
- Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas, USA
| | - Sanjay Singh
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
| | - Shashikant Srivastava
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Texas at Tyler, Tyler, Texas, USA
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
3
|
Touati A, Ibrahim NA, Idres T. Disarming Staphylococcus aureus: Review of Strategies Combating This Resilient Pathogen by Targeting Its Virulence. Pathogens 2025; 14:386. [PMID: 40333163 PMCID: PMC12030135 DOI: 10.3390/pathogens14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Staphylococcus aureus is a formidable pathogen notorious for its antibiotic resistance and diverse virulence mechanisms, including toxin production, biofilm formation, and immune evasion. This article explores innovative anti-virulence strategies to disarm S. aureus by targeting critical virulence factors without exerting bactericidal pressure. Key approaches include inhibiting adhesion and biofilm formation, neutralizing toxins, disrupting quorum sensing (e.g., Agr system inhibitors), and blocking iron acquisition pathways. Additionally, interventions targeting two-component regulatory systems are highlighted. While promising, challenges such as strain variability, biofilm resilience, pharmacokinetic limitations, and resistance evolution underscore the need for combination therapies and advanced formulations. Integrating anti-virulence strategies with traditional antibiotics and host-directed therapies offers a sustainable solution to combat multidrug-resistant S. aureus, particularly methicillin-resistant strains (MRSA), and mitigate the global public health crisis.
Collapse
Affiliation(s)
- Abdelaziz Touati
- Laboratory of Microbial Ecology, FSNV, University of Bejaia, Bejaia 06000, Algeria
| | - Nasir Adam Ibrahim
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia;
| | - Takfarinas Idres
- Laboratory for Livestock Animal Production and Health Research, Rabie Bouchama National Veterinary School of Algiers, Issad ABBAS Street, BP 161 Oued Smar, Algiers 16059, Algeria;
| |
Collapse
|
4
|
Ali L, Karki S, Boorgula GD, Mekakda A, Cagle-White B, Bhattarai S, Beaudoin R, Blakeney A, Singh S, Srivastava S, Abdelaziz MH. A mechanistic understanding of the effect of Staphylococcus aureus VraS histidine kinase single point mutation on antibiotic resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631495. [PMID: 39829873 PMCID: PMC11741417 DOI: 10.1101/2025.01.06.631495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Bacterial genomic mutations in Staphylococcus aureus (S. aureus) have been detected in isolated resistant clinical strains, yet their mechanistic effect on the development of antimicrobial resistance remains unclear. The resistance-associated regulatory systems acquire adaptive mutations under stress conditions that may lead to a gain of function effect and contribute to the resistance phenotype. Here, we investigate the effect of a single-point mutation (T331I) in VraS histidine kinase, part of the VraSR two-component system in S. aureus. VraSR senses and responds to environmental stress signals by upregulating gene expression for cell wall synthesis. A combination of enzyme kinetics, microbiological, and transcriptomic analysis revealed the mechanistic effect of the mutation on VraS and S. aureus . Michaelis Menten's kinetics show that the VraS mutation caused an increase in the autophosphorylation rate of VraS and enhanced its catalytic efficiency. The introduction of the mutation through recombineering coupled with CRISPR-Cas9 counterselection to the Newman strain wild-type (WT) genome doubled the minimum inhibitory concentration of three cell wall-targeting antibiotics. The mutation caused an enhanced S. aureus growth rate at sub-lethal doses of the antibiotics, confirming the causative effect of mutation on bacterial persistence. Transcriptomic analysis showed a genome-wide alteration in gene expression levels and protein-protein interaction network of the mutant compared to the WT strain after exposure to vancomycin. The results suggest that vraS mutation causes several mechanistic changes at the protein and cellular levels that favor bacterial survival under antibiotic stress and cause the mutation-harboring strains to become the dominant population during infection. Importance Rising antimicrobial resistance (AMR) is a global health problem. Mutations in the two- component system have been linked to drug- resistance in Staphylococcus aureus , yet the exact mechanism through which these mutations work is understudied. We investigated the T331I mutation in the vraS gene linked to sensing and responding to cell wall stress. The mutation caused changes at the protein level by increasing the catalytic efficiency of VraS kinase activity. Introducing the mutation to the genome of an S. aureus strain resulted in changes in the phenotypic antibiotic susceptibility, growth kinetics, and genome-wide transcriptomic alterations. By a combination of enzyme kinetics, microbiological, and transcriptomic approaches, we highlight how small genetic changes can significantly impact bacterial physiology and survival under antibiotic stress. Understanding the mechanistic basis of antibiotic resistance is crucial to guide the development of novel therapeutic agents to combat AMR.
Collapse
|
5
|
Ilyas M, Latif MS, Gul A, Babar MM, Rajadas J. Drug repurposing for bacterial infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:1-21. [PMID: 38942533 DOI: 10.1016/bs.pmbts.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Repurposing pharmaceuticals is a technique used to find new, alternate clinical applications for approved drug molecules. It may include altering the drug formulation, route of administration, dose or the dosage regimen. The process of repurposing medicines starts with screening libraries of previously approved drugs for the targeted disease condition. If after an the initial in silico, in vitro or in vivo experimentation, the molecule has been found to be active against a particular target, the molecule is considered as a good candidate for clinical trials. As the safety profile of such molecules is available from the previous data, significant time and resources are saved. These advantages of drug repurposing approach make it especially helpful for finding treatments for rapidly evolving conditions including bacterial infections. An ever-increasing incidence of antimicrobial resistance, owing to the mutations in bacterial genome, leads to therapeutic failure of many approved antibiotics. Repurposing the approved drug molecules for use as antibiotics can provide an effective means for the combating life-threatening bacterial diseases. A number of drugs have been considered for drug repurposing against bacterial infections. These include, but are not limited to, Auranofin, Closantel, and Toremifene that have been repurposed for various infections. In addition, the reallocation of route of administration, redefining dosage regimen and reformulation of dosage forms have also been carried out for repurposing purpose. The current chapter addresses the drug discovery and development process with relevance to repurposing against bacterial infections.
Collapse
Affiliation(s)
- Mahnoor Ilyas
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Saad Latif
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute and Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford University, PaloAlto, CA, United States.
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute and Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford University, PaloAlto, CA, United States
| |
Collapse
|
6
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
7
|
Wang Z, Wang H, Bai J, Cai S, Qu D, Xie Y, Wu Y. The Staphylococcus aureus ArlS Kinase Inhibitor Tilmicosin Has Potent Anti-Biofilm Activity in Both Static and Flow Conditions. Microorganisms 2024; 12:256. [PMID: 38399660 PMCID: PMC10891534 DOI: 10.3390/microorganisms12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 μM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 μM or 1.5 μM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.
Collapse
Affiliation(s)
| | | | | | | | | | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| |
Collapse
|