1
|
Merino BM, Bartucci R, Guzzi R. Interaction of native and aggregated albumin with DMPC bilayers. Biophys Chem 2025; 322:107431. [PMID: 40107079 DOI: 10.1016/j.bpc.2025.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
The study of protein-lipid interaction offers interesting insights into the mutual alterations determined in the formation of the supramolecular complex. It gains even more interest, not only in basic research but also in biomedical and biomaterial applications, when protein aggregation and fibril formation are involved. In this study, the reciprocal influence of human serum albumin (HSA), in both the native and the thermally aggregated state, and dimyristoylphosphatidylcholine (DMPC) bilayers is investigated by combining UV-Vis scattering, attenuated total reflection Fourier transform infrared (ATR-FTIR), and spin-label electron paramagnetic resonance (EPR) spectroscopies. Temperature-dependent optical density at fixed wavelength reveals the pre- and the main phase transitions in DMPC bilayers as well as the onset of protein aggregation at Tagg ≈ 70 °C. In native protein/lipid complexes, the protein adsorption on the membrane surfaces suppresses the pre-transition and downshifts the temperature of the main phase transitions of DMPC, whereas the presence of DMPC increases Tagg without affecting the thermal profile. Kinetics experiments reveal that lipid bilayers reduce the thermally-induced aggregation of the protein. ATR-FTIR data indicate that albumin weakens the hydrogen bonding network at the carbonyl groups of the membrane. Conversely, lipid bilayers in any physical state do not alter the structural features of both native and aggregated HSA. In protein/lipid complexes, spin-label EPR of the lipid component reveals that the proteins reduce the packing density of the first chain segments and stabilize the fluid state, the effect being more evident for the native protein.
Collapse
Affiliation(s)
| | - Rosa Bartucci
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy.
| | - Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy; CNR-NANOTEC, Department of Physics, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
2
|
Chebotareva NA, Eronina TB, Roman SG, Mikhaylova VV, Kleymenov SY, Kurganov BI. Kinetic regime of Ca 2+ and Mg 2+-induced aggregation of phosphorylase kinase at 40 °C. Int J Biol Macromol 2019; 138:181-187. [PMID: 31279057 DOI: 10.1016/j.ijbiomac.2019.06.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
Abstract
Many functions of phosphorylase kinase (PhK) are regulated by Ca2+ and Mg2+ ions. Ca2+ and Mg2+ ions stimulate activity of PhK, induce the changes in the tertiary and quaternary structure of the hexadecameric enzyme molecule, provoke association/aggregation of PhK molecules, enhance PhK binding to glycogen. To establish the kinetic regime of Ca2+ and Mg2+-induced aggregation of PhK from rabbit skeletal muscles at 40 °C, in the present work the kinetics of aggregation was studied at various protein concentrations using the dynamic light scattering. The proposed mechanism of aggregation involves the stage of unfolding of the protein molecule with retention of the integrity of its oligomeric structure, the nucleation stage and stages of the growth of protein aggregates. The initial rate of the aggregation process at the stage of aggregate growth depends linearly on the protein concentration. This means that the order of aggregation with respect to the protein is equal to unity and the aggregation rate is limited by the rate of protein unfolding. The rate constant of the first order characterizing the stage of protein unfolding was found to be equal to 0.071 min-1 (40 mM Hepes, pH 6.8, 100 mM NaCl, 0.1 mM Ca2+, 10 mM Mg2+).
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Tatiana B Eronina
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Svetlana G Roman
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Valeriya V Mikhaylova
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Sergey Yu Kleymenov
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia; Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris I Kurganov
- Laboratory of Structural Biochemistry of Proteins, Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| |
Collapse
|
3
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Borzova VA, Yudin IK, Kurganov BI. Mechanism of aggregation of UV-irradiated glycogen phosphorylase b at a low temperature in the presence of crowders and trimethylamine N-oxide. Biophys Chem 2018; 232:12-21. [DOI: 10.1016/j.bpc.2017.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/25/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
4
|
Kurganov BI. Kinetic regime of aggregation of UV-irradiated glyceraldehyde-3-phosphate dehydrogenase from rabbit skeletal muscle. Biochem Biophys Res Commun 2018; 495:1182-1186. [DOI: 10.1016/j.bbrc.2017.11.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/25/2017] [Indexed: 11/15/2022]
|
5
|
Kurganov BI. Quantification of anti-aggregation activity of chaperones. Int J Biol Macromol 2017; 100:104-117. [DOI: 10.1016/j.ijbiomac.2016.07.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/11/2022]
|
6
|
Abstract
Chemical chaperones including arginine and its derivatives are widely used by biochemists working on the design of agents, which are able to efficiently suppress protein aggregation. To elucidate the mechanisms of anti-aggregation activity of chemical chaperones, methods based on registration of the increment in light scattering intensity must be supplemented with methods for direct detection of the portion of aggregated protein (γagg). For this purpose asymmetric flow field-flow fractionation was used in the present work. It was shown that heat-induced aggregation of bovine serum albumin (BSA) followed the kinetics of the reaction of the second order (0.1 M sodium phosphate buffer, pH 7.0, 70 °C). It was proposed to use Rhvs γagg plots to characterize the aggregation pathway (Rh is the hydrodynamic radius of the protein aggregates, which was calculated from the dynamic light scattering data). The changes in the shape of Rhvs γagg plots in the presence of arginine, arginine amide and arginine ethyl ester are indicative of the changes in the aggregation pathway of BSA aggregation. A conclusion has been made that larger aggregates are formed in the presence of arginine hydrochloride and its derivatives.
Collapse
|
7
|
Chebotareva NA, Roman SG, Kurganov BI. Dissociative mechanism for irreversible thermal denaturation of oligomeric proteins. Biophys Rev 2016; 8:397-407. [PMID: 28510015 PMCID: PMC5418479 DOI: 10.1007/s12551-016-0220-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Protein stability is a fundamental characteristic essential for understanding conformational transformations of the proteins in the cell. When using protein preparations in biotechnology and biomedicine, the problem of protein stability is of great importance. The kinetics of denaturation of oligomeric proteins may have characteristic properties determined by the quaternary structure. The kinetic schemes of denaturation can include the multiple stages of conformational transitions in the protein oligomer and stages of reversible dissociation of the oligomer. In this case, the shape of the kinetic curve of denaturation or the shape of the melting curve registered by differential scanning calorimetry can vary with varying the protein concentration. The experimental data illustrating dissociative mechanism for irreversible thermal denaturation of oligomeric proteins have been summarized in the present review. The use of test systems based on thermal aggregation of oligomeric proteins for screening of agents possessing anti-aggregation activity is discussed.
Collapse
Affiliation(s)
- Natalia A Chebotareva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia.
| | - Svetlana G Roman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow, 119071, Russia
| |
Collapse
|
8
|
Stirpe A, Pantusa M, Rizzuti B, De Santo MP, Sportelli L, Bartucci R, Guzzi R. Resveratrol induces thermal stabilization of human serum albumin and modulates the early aggregation stage. Int J Biol Macromol 2016; 92:1049-1056. [DOI: 10.1016/j.ijbiomac.2016.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/03/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
|
9
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Kurganov BI. Kinetic regime of thermal aggregation of holo- and apoglycogen phosphorylases b. Int J Biol Macromol 2016; 92:1252-1257. [PMID: 27527690 DOI: 10.1016/j.ijbiomac.2016.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
To characterize the role of pyridoxal 5'-phosphate in stabilization of the conformation of muscle glycogen phosphorylase b (Phb), the mechanism of thermal aggregation for holo- and apoforms of Phb has been studied using dynamic light scattering. The order of aggregation with respect to the protein (n) for aggregation of holoPhb at 48°C is equal to 0.5 suggesting that the dissociative mechanism of denaturation is operative and denaturation is followed by rapid aggregation stage. In the case of aggregation of apoPhb at 37°C n=2 and the rate-limiting stage is aggregation of unfolded protein molecules.
Collapse
Affiliation(s)
- Tatiana B Eronina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia.
| | - Valeriya V Mikhaylova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
10
|
Abstract
It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms-semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution.
Collapse
Affiliation(s)
- Wei Wang
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, 700 Chesterfield Parkway West, Chesterfield, MO, 63017.,Wang Biologics, LLC, 907 Wellesley Place, Chesterfield, Missouri, 63017
| |
Collapse
|
11
|
Jiang H, Sui Y, Cui Y, Lin P, Li W, Xing S, Wang D, Hu M, Fu X. Expression, purification, and characterization of human osteoclastic protein-tyrosine phosphatase catalytic domain in Escherichia coli. Protein Expr Purif 2015; 107:7-12. [DOI: 10.1016/j.pep.2014.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/10/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
|
12
|
Kurganov BI. Antiaggregation activity of chaperones and its quantification. BIOCHEMISTRY (MOSCOW) 2014; 78:1554-66. [DOI: 10.1134/s0006297913130129] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
|
14
|
Cheng W, Joshi SB, He F, Brems DN, He B, Kerwin BA, Volkin DB, Middaugh CR. Comparison of High-Throughput Biophysical Methods to Identify Stabilizing Excipients for a Model IgG2 Monoclonal Antibody: Conformational Stability and Kinetic Aggregation Measurements. J Pharm Sci 2012; 101:1701-20. [DOI: 10.1002/jps.23076] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 01/18/2012] [Indexed: 12/12/2022]
|
15
|
Early stage aggregation of human serum albumin in the presence of metal ions. Int J Biol Macromol 2011; 49:337-42. [DOI: 10.1016/j.ijbiomac.2011.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022]
|
16
|
Tadpitchayangkoon P, Park JW, Yongsawatdigul J. Conformational changes and dynamic rheological properties of fish sarcoplasmic proteins treated at various pHs. Food Chem 2010. [DOI: 10.1016/j.foodchem.2010.01.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zou HC, Lü ZR, Wang YJ, Zhang YM, Zou F, Park YD. Effect of Cysteine Modification on Creatine Kinase Aggregation. Appl Biochem Biotechnol 2008; 152:15-28. [DOI: 10.1007/s12010-008-8282-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
|
18
|
Madan LL, Gopal B. Addition of a polypeptide stretch at the N-terminus improves the expression, stability and solubility of recombinant protein tyrosine phosphatases from Drosophila melanogaster. Protein Expr Purif 2007; 57:234-43. [PMID: 18023205 DOI: 10.1016/j.pep.2007.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/01/2007] [Accepted: 10/03/2007] [Indexed: 01/09/2023]
Abstract
The production of recombinant proteins in Escherichia coli involves substantial optimization in the size of the protein and over-expression strategies to avoid inclusion-body formation. Here we report our observations on this so-called construct dependence using the catalytic domains of five Drosophila melanogaster receptor protein tyrosine phosphatases as a model system. Five strains of E. coli as well as three variations in purification tags viz., poly-histidine peptide attachments at the N- and C-termini and a construct with Glutathione-S-transferase at the N-terminus were examined. In this study we observe that inclusion of a 45 residue stretch at the N-terminus was crucial for over-expression of the enzymes, influencing both the solubility and the stability of these recombinant proteins. While the addition of negatively charged residues in the N-terminal extension could partially rationalize the improvement in the solubility of these constructs, conventional parameters like the proportion of order promoting residues or aliphatic index did not correlate with the improved biochemical characteristics. These findings thus suggest the inclusion of additional parameters apart from rigid domain predictions to obtain domain constructs that are most likely to yield soluble protein upon expression in E. coli.
Collapse
Affiliation(s)
- Lalima L Madan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
19
|
Meremyanin AV, Eronina TB, Chebotareva NA, Kleimenov SY, Yudin IK, Muranov KO, Ostrovsky MA, Kurganov BI. Effect of alpha-crystallin on thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscle. BIOCHEMISTRY (MOSCOW) 2007; 72:518-28. [PMID: 17573706 DOI: 10.1134/s0006297907050082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thermal aggregation of rabbit skeletal muscle glycogen phosphorylase b (Phb) has been investigated using dynamic light scattering under conditions of a constant rate of temperature increase (1 K/min). The linear behavior of the dependence of the hydrodynamic radius on temperature for Phb aggregation is consistent with the idea that thermal aggregation of proteins proceeds in the kinetic regime wherein the rate of aggregation is limited by diffusion of the interacting particles (the regime of "diffusion-limited cluster-cluster aggregation"). In the presence of alpha-crystallin, a protein exhibiting chaperone-like activity, the dependence of the hydrodynamic radius on temperature follows the exponential law; this suggests that the aggregation process proceeds in the kinetic regime where the sticking probability for colliding particles becomes lower than unity (the regime of "reaction-limited cluster-cluster aggregation"). Based on analysis of the ratio between the light scattering intensity and the hydrodynamic radius of Phb aggregates, it has been concluded that the addition of alpha-crystallin results in formation of smaller size starting aggregates. The data on differential scanning calorimetry indicate that alpha-crystallin interacts with the intermediates of the unfolding process of the Phb molecule. The proposed scheme of thermal denaturation and aggregation of Phb includes the stage of reversible dissociation of dimers of Phb into monomers, the stage of the formation of the starting aggregates from the denatured monomers of Phb, and the stage of the sticking of the starting aggregates and higher order aggregates. Dissociation of Phb dimer into monomers at elevated temperatures has been confirmed by analytical ultracentrifugation.
Collapse
Affiliation(s)
- A V Meremyanin
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bagger HL, Øgendal LH, Westh P. Solute effects on the irreversible aggregation of serum albumin. Biophys Chem 2007; 130:17-25. [PMID: 17689001 DOI: 10.1016/j.bpc.2007.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 11/18/2022]
Abstract
Thermal stress on bovine serum albumin (BSA) promotes protein aggregation through the formation of intermolecular beta-sheets. We have used light scattering and chromatography to study effects of (<1 M) Na(2)SO(4), NaSCN, sucrose, sorbitol and urea on the rate of the thermal aggregation. Both salts were strong inhibitors of BSA aggregation and they reduced both the size and number (concentration) of aggregate particles compared to non-ionic solutes (or pure buffer). Hence, the salts appear to suppress both nucleation- and growth rate. The non-electrolyte additives reduced the initial aggregation rate (compared to pure buffer), but did not significantly limit the extent of aggregation in samples quenched after 27 min. heat exposure (40-50% aggregation in all samples). The non-electrolytes did, however, modify the aggregation process as they consistently brought about smaller but more concentrated aggregates than pure buffer. The results are discussed along the lines of linkage- and transition state theories. In this framework, the rate of the aggregation process is governed by the equilibrium between a thermally denatured state (D) and the transition state D( not equal). Thus, the effect of a solute relies on its preferential interactions with respectively D and D( not equal). The current results do not show any correlation between the solutes' preferential interactions with native BSA and their effect on the rate of aggregation. This suggests that non-specific, "Hofmeister-type" interactions, which scale with the solvent accessible surface area, are of minor importance. Rather, salt induced suppression of aggregation is suggested to depend on the modulation of specific electrostatic forces in the D( not equal) state.
Collapse
Affiliation(s)
- Heidi L Bagger
- Roskilde University, Department of Science, Models and Systems, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | | | | |
Collapse
|