1
|
Gorbushin A, Ruparčič M, Anderluh G. Littoporins: Novel actinoporin-like proteins in caenogastropod genus Littorina. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109698. [PMID: 38871141 DOI: 10.1016/j.fsi.2024.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
In the course of searching for genes controlling the immune system in caenogastropod mollusks, we characterized and phylogenetically placed five new actinoporin-like cytolysins expressed in periwinkles of the genus Littorina. These newly discovered proteins, named littoporins (LitP), contain a central cytolysin/lectin domain and exhibit a predicted protein fold that is almost identical to the three-dimensional structures of actinoporins. Two of these proteins, LitP-1 and LitP-2, were found to be upregulated in L. littorea kidney tissues and immune cells in response to natural and experimental infection with the trematode Himasthla elongata, suggesting their potential role as perforins in the systemic anti-trematode immune response. The primary sequence divergence of littoporins is hypothesized to be attributed to the taxonomic range of cell membranes they can recognize and permeabilize.
Collapse
Affiliation(s)
- Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| | - Matija Ruparčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Rudenko N, Siunov A, Zamyatina A, Melnik B, Nagel A, Karatovskaya A, Borisova M, Shepelyakovskaya A, Andreeva-Kovalevskaya Z, Kolesnikov A, Surin A, Brovko F, Solonin A. The C-terminal domain of Bacillus cereus hemolysin II oligomerizes by itself in the presence of cell membranes to form ion channels. Int J Biol Macromol 2022; 200:416-427. [PMID: 35041890 DOI: 10.1016/j.ijbiomac.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
Bacillus cereus hemolysin II, a pore-forming β-barrel toxin (HlyII), has a C-terminal extension of 94 amino acid residues, designated as the C-terminal domain of HlyII (HlyIICTD). HlyIICTD is capable of forming oligomers in aqueous solutions. Oligomerization of HlyIICTD significantly increased in the presence of erythrocytes and liposomes. Its affinity for erythrocytes of various origins differed insignificantly but was noticeably higher for T-cells. HlyIICTD destroyed THP-1 monocytes and J774 macrophages, acted most effectively on Jurkat T-lymphocytes and had virtually no impact on B-cell lines. HlyIICTD was able to form ion-conducting channels on an artificial bilayer membrane.
Collapse
Affiliation(s)
- Natalia Rudenko
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia.
| | - Alexander Siunov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna Zamyatina
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Bogdan Melnik
- Institute of Protein Research, Russian Academy of Sciences, 4 Institutskaya Street, 142290 Pushchino, Moscow Region, Russia
| | - Alexey Nagel
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna Karatovskaya
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Marina Borisova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 2 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna Shepelyakovskaya
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Zhanna Andreeva-Kovalevskaya
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Kolesnikov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexey Surin
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Fedor Brovko
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Solonin
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
3
|
Besançon H, Larpin Y, Babiychuk VS, Köffel R, Babiychuk EB. Engineered Liposomes Protect Immortalized Immune Cells from Cytolysins Secreted by Group A and Group G Streptococci. Cells 2022; 11:cells11010166. [PMID: 35011729 PMCID: PMC8749993 DOI: 10.3390/cells11010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/10/2022] Open
Abstract
The increasing antibiotic resistance of bacterial pathogens fosters the development of alternative, non-antibiotic treatments. Antivirulence therapy, which is neither bacteriostatic nor bactericidal, acts by depriving bacterial pathogens of their virulence factors. To establish a successful infection, many bacterial pathogens secrete exotoxins/cytolysins that perforate the host cell plasma membrane. Recently developed liposomal nanotraps, mimicking the outer layer of the targeted cell membranes, serve as decoys for exotoxins, thus diverting them from attacking host cells. In this study, we develop a liposomal nanotrap formulation that is capable of protecting immortalized immune cells from the whole palette of cytolysins secreted by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis—important human pathogens that can cause life-threatening bacteremia. We show that the mixture of cholesterol-containing liposomes with liposomes composed exclusively of phospholipids is protective against the combined action of all streptococcal exotoxins. Our findings pave the way for further development of liposomal antivirulence therapy in order to provide more efficient treatment of bacterial infections, including those caused by antibiotic resistant pathogens.
Collapse
|
4
|
Rudenko N, Nagel A, Zamyatina A, Karatovskaya A, Salyamov V, Andreeva-Kovalevskaya Z, Siunov A, Kolesnikov A, Shepelyakovskaya A, Boziev K, Melnik B, Brovko F, Solonin A. A Monoclonal Antibody against the C-Terminal Domain of Bacillus cereus Hemolysin II Inhibits HlyII Cytolytic Activity. Toxins (Basel) 2020; 12:E806. [PMID: 33352744 PMCID: PMC7767301 DOI: 10.3390/toxins12120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 01/13/2023] Open
Abstract
Bacillus cereus is the fourth most common cause of foodborne illnesses that produces a variety of pore-forming proteins as the main pathogenic factors. B. cereus hemolysin II (HlyII), belonging to pore-forming β-barrel toxins, has a C-terminal extension of 94 amino acid residues designated as HlyIICTD. An analysis of a panel of monoclonal antibodies to the recombinant HlyIICTD protein revealed the ability of the antibody HlyIIC-20 to inhibit HlyII hemolysis. A conformational epitope recognized by HlyIIC-20 was found. by the method of peptide phage display and found that it is localized in the N-terminal part of HlyIICTD. The HlyIIC-20 interacted with a monomeric form of HlyII, thus suppressing maturation of the HlyII toxin. Protection efficiencies of various B. cereus strains against HlyII were different and depended on the epitope amino acid composition, as well as, insignificantly, on downstream amino acids. Substitution of L324P and P324L in the hemolysins ATCC14579T and B771, respectively, determined the role of leucine localized to the epitope in suppressing the hemolysis by the antibody. Pre-incubation of HlyIIC-20 with HlyII prevented the death of mice up to an equimolar ratio. A strategy of detecting and neutralizing the toxic activity of HlyII could provide a tool for monitoring and reducing B. cereus pathogenicity.
Collapse
Affiliation(s)
- Natalia Rudenko
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Alexey Nagel
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Anna Zamyatina
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
- Pushchino State Institute of Natural Sciences, 3 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia
| | - Anna Karatovskaya
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Vadim Salyamov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Zhanna Andreeva-Kovalevskaya
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Alexander Siunov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Alexander Kolesnikov
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| | - Anna Shepelyakovskaya
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Khanafiy Boziev
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Bogdan Melnik
- Protein Institute of the Russian Academy of Sciences, 4 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia;
| | - Fedor Brovko
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.Z.); (A.K.); (A.S.); (K.B.); (F.B.)
| | - Alexander Solonin
- FSBIS FRC Pushchino Scientific Centre of Biological Research, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 5 Prospekt Nauki, 142290 Pushchino, Moscow Region, Russia; (A.N.); (V.S.); (Z.A.-K.); (A.S.); (A.K.); (A.S.)
| |
Collapse
|
5
|
Chen Q, Zhao H, Wen M, Li J, Zhou H, Wang J, Zhou Y, Liu Y, Du L, Kang H, Zhang J, Cao R, Xu X, Zhou JJ, Ren B, Wang Y. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. BMC Genomics 2020; 21:242. [PMID: 32183717 PMCID: PMC7079503 DOI: 10.1186/s12864-020-6629-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects. RESULTS Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. cunea. At the metagenomic level, several microbial communities in H. cunea gut and their metabolic pathways might be beneficial to H. cunea for nutrient metabolism and detoxification, and might also contribute to its host adaptation. CONCLUSIONS These findings explain the host and environmental adaptations of H. cunea at the genetic level and provide partial evidence for the cause of its rapid invasion and potential gene targets for innovative pest management strategies.
Collapse
Affiliation(s)
- Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Ming Wen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiaxin Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Haifeng Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jiatong Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yuxin Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yulin Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Lixin Du
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hui Kang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Jian Zhang
- School of Life Sciences, Changchun Normal University, Changchun, Jilin, China
| | - Rui Cao
- Meihekou Forest Pest Control Station, Changchun, Jilin, China
| | - Xiaoming Xu
- Garden and Plant Protection Station of Changchun, Changchun, Jilin, China
| | - Jing-Jiang Zhou
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, Jilin, China.
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China.
| |
Collapse
|
6
|
Gerdol M, Cervelli M, Oliverio M, Modica MV. Piercing Fishes: Porin Expansion and Adaptation to Hematophagy in the Vampire Snail Cumia reticulata. Mol Biol Evol 2019; 35:2654-2668. [PMID: 30099551 PMCID: PMC6231492 DOI: 10.1093/molbev/msy156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytolytic pore-forming proteins are widespread in living organisms, being mostly involved in both sides of the host-pathogen interaction, either contributing to the innate defense or promoting infection. In venomous organisms, such as spiders, insects, scorpions, and sea anemones, pore-forming proteins are often secreted as key components of the venom. Coluporins are pore-forming proteins recently discovered in the Mediterranean hematophagous snail Cumia reticulata (Colubrariidae), highly expressed in the salivary glands that discharge their secretion at close contact with the host. To understand their putative functional role, we investigated coluporins' molecular diversity and evolutionary patterns. Coluporins is a well-diversified family including at least 30 proteins, with an overall low sequence similarity but sharing a remarkably conserved actinoporin-like predicted structure. Tracking the evolutionary history of the molluscan porin genes revealed a scattered distribution of this family, which is present in some other lineages of predatory gastropods, including venomous conoidean snails. Comparative transcriptomic analyses highlighted the expansion of porin genes as a lineage-specific feature of colubrariids. Coluporins seem to have evolved from a single ancestral porin gene present in the latest common ancestor of all Caenogastropoda, undergoing massive expansion and diversification in this colubrariid lineage through repeated gene duplication events paired with widespread episodic positive selection. As for other parasites, these findings are congruent with a "one-sided arms race," equipping the parasite with multiple variants in order to broaden its host spectrum. Overall, our results pinpoint a crucial adaptive role for coluporins in the evolution of the peculiar trophic ecology of vampire snails.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, Trieste University, Italy
| | | | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Roma, Italy
| | - Maria Vittoria Modica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.,UMR5247, University of Montpellier, France
| |
Collapse
|
7
|
He Y, Li R, Li H, Zhang S, Dai W, Wu Q, Jiang L, Zheng Z, Shen S, Chen X, Zhu Y, Wang J, Pang Z. Erythroliposomes: Integrated Hybrid Nanovesicles Composed of Erythrocyte Membranes and Artificial Lipid Membranes for Pore-Forming Toxin Clearance. ACS NANO 2019; 13:4148-4159. [PMID: 30855941 DOI: 10.1021/acsnano.8b08964] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pore-forming toxins (PFTs) are the most common bacterial virulence proteins and play a significant role in the pathogenesis of bacterial infections; thus, PFTs are an attractive therapeutic target in bacterial infections. Inspired by the pore-forming process and mechanism of PFTs, we designed an integrated hybrid nanovesicle-the erythroliposome (called the RM-PL)-for PFT detoxification by fusing natural red blood cell (RBC) membranes with artificial lipid membranes. The lipid and RBC membranes were mutually beneficial when integrated into a hybrid nanovesicle structure. The RBC membrane endowed RM-PLs with the capacity for detoxification, while the PEGylated lipid membrane stabilized the RM-PLs and greatly improved the detoxification capacity of the RBC membrane. With α-hemolysin (Hlα) as a model PFT, we demonstrated that RM-PLs could not only significantly reduce the toxicity of Hlα to erythrocytes in vitro but also effectively sponge Hlα in vivo and rescue mice from Hlα-induced damage. Moreover, the high detoxification capacity of RM-PLs was shown to be partly related to the expression of the Hlα receptor protein, a disintegrin and metalloproteinase domain-containing protein 10 on the RBC membrane. Consequently, as a component integrating natural and artificial materials, the erythroliposome nanoplatform inspires potential strategies for antivirulence therapy.
Collapse
Affiliation(s)
- Yuwei He
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Haichun Li
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
| | - Shuya Zhang
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology , Shanghai Industrial Technology Institute , Shanghai 201203 , China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology , Shanghai Industrial Technology Institute , Shanghai 201203 , China
| | - Lixian Jiang
- Innovation Research Institute of Traditional Chinese Medicine , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Zicong Zheng
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
| | - Shun Shen
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
- Institute of Integrated Chinese and Western Medicine , Fudan University , Shanghai 200040 , China
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy , Fudan University and Key Laboratory of Smart Drug Delivery, Ministry of Education , Shanghai 201203 , China
| |
Collapse
|
8
|
Emelyanova KA, Victorov AI. Driving Force for Spontaneous Perforation of Bilayers Formed by Ionic Amphiphiles in Aqueous Salt. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13438-13443. [PMID: 29064715 DOI: 10.1021/acs.langmuir.7b02885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spontaneous perforation of amphiphilic membranes is important in both living matter and technology because of an impact on functions of biological membranes and shape transitions of self-assembling structures. Nevertheless, no definite molecular mechanism has been established so far even for simple ionic surfactant systems. We show that spontaneous perforation of a bilayer formed by an ionic amphiphile is driven by electrostatics. Creation of large pores with a concave-convex geometry of the rim is promoted by lower electrostatic free energy than that for a flat nonperforated bilayer. The opposite effect comes from the elasticity of the hydrocarbon tails of the amphiphile that prefer flat geometry of a nonperforated bilayer. The balance between electrostatics and tail deformation controls the appearance of pores; this balance is modulated by added salt that screens the electrostatic interactions. We illustrate the proposed mechanism with the aid of classical aggregation model that has been extended by including an analytical description of the electrostatic contribution for the toroidal rim of a pore. Numerical solution of the linearized Poisson-Boltzmann equation confirms the role of electrostatic forces in formation of pores. For the ionic surfactants of CnTAB family, we predict shape transitions including bilayer perforations and formation of branched micellar networks induced by changing salinity or temperature and demonstrate the effect of surfactant's molecular parameters on these transitions.
Collapse
Affiliation(s)
- Ksenia A Emelyanova
- St. Petersburg State University , 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexey I Victorov
- St. Petersburg State University , 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
9
|
pH regulates pore formation of a protease activated Vip3Aa from Bacillus thuringiensis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2234-2241. [DOI: 10.1016/j.bbamem.2017.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 11/20/2022]
|
10
|
Yurkin ST, Wang Z. Cell membrane-derived nanoparticles: emerging clinical opportunities for targeted drug delivery. Nanomedicine (Lond) 2017; 12:2007-2019. [PMID: 28745122 DOI: 10.2217/nnm-2017-0100] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biofunctionalization of nanoparticles (NPs) is an essential component in targeted drug delivery. However, current nanotechnology remains inadequate to imitate complex intercellular interactions existing in physiological conditions in human bodies. Emerging concepts have been explored to utilize human cells to generate cell membrane-formed NPs because cells retain inherent abilities to interact with human tissues compared with synthetic nanomaterials. Neutrophils, red blood cells (RBCs), platelets and monocytes have been employed to form therapeutic NPs to treat vascular disease and cancer, and these novel drug delivery platforms show the translation potential to improve patient quality of life. In this review, we will discuss the concept of cell membrane-formed NPs, the molecular mechanisms of their disease targeting and the potential of personalized nanomedicine.
Collapse
Affiliation(s)
- Svetlana T Yurkin
- College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210, USA
| |
Collapse
|
11
|
Comparative genomic analysis reveals genetic features related to the virulence of Bacillus cereus FORC_013. Gut Pathog 2017; 9:29. [PMID: 28515790 PMCID: PMC5433235 DOI: 10.1186/s13099-017-0175-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus cereus is well known as a gastrointestinal pathogen that causes food-borne illness. In the present study, we sequenced the complete genome of B. cereus FORC_013 isolated from fried eel in South Korea. To extend our understanding of the genomic characteristics of FORC_013, we conducted a comparative analysis with the published genomes of other B. cereus strains. RESULTS We fully assembled the single circular chromosome (5,418,913 bp) and one plasmid (259,749 bp); 5511 open reading frames (ORFs) and 283 ORFs were predicted for the chromosome and plasmid, respectively. Moreover, we detected that the enterotoxin (NHE, HBL, CytK) induces food-borne illness with diarrheal symptom, and that the pleiotropic regulator, along with other virulence factors, plays a role in surviving and biofilm formation. Through comparative analysis using the complete genome sequence of B. cereus FORC_013, we identified both positively selected genes related to virulence regulation and 224 strain-specific genes of FORC_013. CONCLUSIONS Through genome analysis of B. cereus FORC_013, we identified multiple virulence factors that may contribute to pathogenicity. These results will provide insight into further studies regarding B. cereus pathogenesis mechanism at the genomic level.
Collapse
|
12
|
Deng NN, Yelleswarapu M, Huck WTS. Monodisperse Uni- and Multicompartment Liposomes. J Am Chem Soc 2016; 138:7584-91. [DOI: 10.1021/jacs.6b02107] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Nan-Nan Deng
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Maaruthy Yelleswarapu
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
13
|
Gao W, Zhang L. Engineering red-blood-cell-membrane-coated nanoparticles for broad biomedical applications. AIChE J 2015. [DOI: 10.1002/aic.14735] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Weiwei Gao
- Dept. of Nanoengineering and Moores Cancer Center; University of California; San Diego, La Jolla CA 92093
| | - Liangfang Zhang
- Dept. of Nanoengineering and Moores Cancer Center; University of California; San Diego, La Jolla CA 92093
| |
Collapse
|
14
|
Olchowik-Grabarek E, Swiecicka I, Andreeva-Kovaleskaya Z, Solonin A, Bonarska-Kujawa D, Kleszczyńska H, Mavlyanov S, Zamaraeva M. Role of Structural Changes Induced in Biological Membranes by Hydrolysable Tannins from Sumac Leaves (Rhus typhina L.) in their Antihemolytic and Antibacterial Effects. J Membr Biol 2014; 247:533-40. [DOI: 10.1007/s00232-014-9664-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/09/2014] [Indexed: 01/03/2023]
|
15
|
Martinelli AH, Kappaun K, Ligabue-Braun R, Defferrari MS, Piovesan AR, Stanisçuaski F, Demartini DR, Dal Belo CA, Almeida CG, Follmer C, Verli H, Carlini CR, Pasquali G. Structure–function studies on jaburetox, a recombinant insecticidal peptide derived from jack bean (Canavalia ensiformis) urease. Biochim Biophys Acta Gen Subj 2014; 1840:935-44. [DOI: 10.1016/j.bbagen.2013.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/02/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
|
16
|
Piovesan AR, Martinelli AHS, Ligabue-Braun R, Schwartz JL, Carlini CR. Canavalia ensiformis urease, Jaburetox and derived peptides form ion channels in planar lipid bilayers. Arch Biochem Biophys 2014; 547:6-17. [PMID: 24583269 DOI: 10.1016/j.abb.2014.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/22/2023]
Abstract
Ureases catalyze the hydrolysis of urea into NH3 and CO2. They are synthesized by plants, fungi and bacteria but not by animals. Ureases display biological activities unrelated to their enzymatic activity, i.e., platelet and neutrophil activation, fungus inhibition and insecticidal effect. Urease from Canavalia ensiformis (jack bean) is toxic to several hemipteran and coleopteran insects. Jaburetox is an insecticidal fragment derived from jack bean urease. Among other effects, Jaburetox has been shown to interact with lipid vesicles. In this work, the ion channel activity of C. ensiformis urease, Jaburetox and three deletion mutants of Jaburetox (one lacking the N-terminal region, one lacking the C-terminal region and one missing the central β-hairpin) were tested on planar lipid bilayers. All proteins formed well resolved, highly cation-selective channels exhibiting two conducting states whose conductance ranges were 7-18pS and 32-79pS, respectively. Urease and the N-terminal mutant of Jaburetox were more active at negative potentials, while the channels of the other peptides did not display voltage-dependence. This is the first direct demonstration of the capacity of C. ensiformis urease and Jaburetox to permeabilize membranes through an ion channel-based mechanism, which may be a crucial step of their diverse biological activities, including host defense.
Collapse
Affiliation(s)
- Angela R Piovesan
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Anne H S Martinelli
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil; Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil
| | - Jean-Louis Schwartz
- Groupe d'étude des protéines membranaires (GÉPROM, FQR-S) and Department of Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; Centre SÈVE (FQR-NT), Université de Sherbrooke, Sherbrooke, Quebec J1K 2R, Canada.
| | - Celia R Carlini
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil; Department of Biophysics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP 91501-970, Brazil.
| |
Collapse
|
17
|
Cellular response to Trypanosoma cruzi infection induces secretion of defensin α-1, which damages the flagellum, neutralizes trypanosome motility, and inhibits infection. Infect Immun 2013; 81:4139-48. [PMID: 23980110 DOI: 10.1128/iai.01459-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. Here we show that colonic epithelial model HCT116 cells respond to Trypanosoma cruzi infection by secreting defensin α-1, which reduces infection. We also report the early effects of defensin α-1 on invasive trypomastigotes that involve damage of the flagellar structure to inhibit parasite motility and reduce cellular infection. Short exposure of defensin α-1 to trypomastigotes shows that defensin α-1 binds to the flagellum, resulting in flagellar membrane and axoneme alterations, followed by breaking of the flagellar membrane connected to the trypanosome body, leading to detachment and release of the parasite flagellum. In addition, defensin α-1 induces a significant reduction in parasite motility in a peptide concentration-dependent manner, which is abrogated by anti-defensin α-1 IgG. Preincubation of trypomastigotes with a concentration of defensin α-1 that inhibits 50% trypanosome motility significantly reduced cellular infection by 80%. Thus, human defensin α-1 is an innate immune molecule that is secreted by HCT116 cells in response to T. cruzi infection, inhibits T. cruzi motility, and plays an important role in reducing cellular infection. This is the first report showing a novel cellular innate immune response to a human parasite by secretion of defensin α-1, which neutralizes the motility of a human parasite to reduce cellular infection. The mode of activity of human defensin α-1 against T. cruzi and its function may provide insights for the development of new antiparasitic strategies.
Collapse
|
18
|
Tran SL, Ramarao N. Bacillus cereus immune escape: a journey within macrophages. FEMS Microbiol Lett 2013; 347:1-6. [PMID: 23827020 DOI: 10.1111/1574-6968.12209] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 12/14/2022] Open
Abstract
During bacterial infection, professional phagocytes are attracted to the site of infection, where they constitute a first line of host cell defense. Their function is to engulf and destroy the pathogens. Thus, bacteria must withstand the bactericidal activity of professional phagocytes, including macrophages to counteract the host immune system. Bacillus cereus infections are characterized by bacteremia despite the accumulation of inflammatory cells at the site of infection. This implies that the bacteria have developed means of resisting the host immune system. Bacillus cereus spores survive, germinate, and multiply in contact with macrophages, eventually producing toxins that kill these cells. However, the exact mechanism by which B. cereus evades immune attack remains unclear. This review addresses the interaction between B. cereus and macrophages, highlighting, in particular, the ways in which the bacteria escape the microbicidal activities of professional phagocytes.
Collapse
Affiliation(s)
- Seav-Ly Tran
- INRA, Unité MICALIS, AgroParisTech, UMR-1319, La Minière, Guyancourt, France
| | | |
Collapse
|
19
|
The pore-forming haemolysins of bacillus cereus: a review. Toxins (Basel) 2013; 5:1119-39. [PMID: 23748204 PMCID: PMC3717773 DOI: 10.3390/toxins5061119] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/05/2022] Open
Abstract
The Bacillus cereus sensu lato group contains diverse Gram-positive spore-forming bacteria that can cause gastrointestinal diseases and severe eye infections in humans. They have also been incriminated in a multitude of other severe, and frequently fatal, clinical infections, such as osteomyelitis, septicaemia, pneumonia, liver abscess and meningitis, particularly in immuno-compromised patients and preterm neonates. The pathogenic properties of this organism are mediated by the synergistic effects of a number of virulence products that promote intestinal cell destruction and/or resistance to the host immune system. This review focuses on the pore-forming haemolysins produced by B. cereus: haemolysin I (cereolysin O), haemolysin II, haemolysin III and haemolysin IV (CytK). Haemolysin I belongs to the cholesterol-dependent cytolysin (CDC) family whose best known members are listeriolysin O and perfringolysin O, produced by L. monocytogenes and C. perfringens respectively. HlyII and CytK are oligomeric ß-barrel pore-forming toxins related to the α-toxin of S. aureus or the ß-toxin of C. perfringens. The structure of haemolysin III, the least characterized haemolytic toxin from the B. cereus, group has not yet been determined.
Collapse
|
20
|
Hu CMJ, Fang RH, Copp J, Luk BT, Zhang L. A biomimetic nanosponge that absorbs pore-forming toxins. NATURE NANOTECHNOLOGY 2013; 8:336-40. [PMID: 23584215 PMCID: PMC3648601 DOI: 10.1038/nnano.2013.54] [Citation(s) in RCA: 532] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/12/2013] [Indexed: 05/17/2023]
Abstract
Detoxification treatments such as toxin-targeted anti-virulence therapy offer ways to cleanse the body of virulence factors that are caused by bacterial infections, venomous injuries and biological weaponry. Because existing detoxification platforms such as antisera, monoclonal antibodies, small-molecule inhibitors and molecularly imprinted polymers act by targeting the molecular structures of toxins, customized treatments are required for different diseases. Here, we show a biomimetic toxin nanosponge that functions as a toxin decoy in vivo. The nanosponge, which consists of a polymeric nanoparticle core surrounded by red blood cell membranes, absorbs membrane-damaging toxins and diverts them away from their cellular targets. In a mouse model, the nanosponges markedly reduce the toxicity of staphylococcal alpha-haemolysin (α-toxin) and thus improve the survival rate of toxin-challenged mice. This biologically inspired toxin nanosponge presents a detoxification treatment that can potentially treat a variety of injuries and diseases caused by pore-forming toxins.
Collapse
|
21
|
Glucose 6P binds and activates HlyIIR to repress Bacillus cereus haemolysin hlyII gene expression. PLoS One 2013; 8:e55085. [PMID: 23405113 PMCID: PMC3566180 DOI: 10.1371/journal.pone.0055085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/17/2012] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. We have previously shown that B. cereus Haemolysin II (HlyII) induces macrophage cell death by apoptosis. In this work, we investigated the regulation of the hlyII gene. We show that HlyIIR, the negative regulator of hlyII expression in B. cereus, is especially active during the early bacterial growth phase. We demonstrate that glucose 6P directly binds to HlyIIR and enhances its activity at a post-transcriptional level. Glucose 6P activates HlyIIR, increasing its capacity to bind to its DNA-box located upstream of the hlyII gene, inhibiting its expression. Thus, hlyII expression is modulated by the availability of glucose. As HlyII induces haemocyte and macrophage death, two cell types that play a role in the sequestration of nutrients upon infection, HlyII may induce host cell death to allow the bacteria to gain access to carbon sources that are essential components for bacterial growth.
Collapse
|
22
|
A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol 2012; 280:22-35. [PMID: 23246832 DOI: 10.1016/j.cellimm.2012.11.009] [Citation(s) in RCA: 419] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/15/2012] [Indexed: 01/01/2023]
Abstract
Cathelicidins are a group of antimicrobial peptides. Since their discovery, it has become clear that they are an exceptional class of peptides, with some members having pleiotropic effects. Not only do they possess an antibacterial, antifungal and antiviral function, they also show a chemotactic and immunostimulatory/-modulatory effect. Moreover, they are capable of inducing wound healing, angiogenesis and modulating apoptosis. Recent insights even indicate for a role of these peptides in cancer. This review provides a comprehensive summary of the most recent and relevant insights concerning the human cathelicidin LL-37.
Collapse
|
23
|
Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur. J Bacteriol 2012; 194:3327-35. [PMID: 22522892 DOI: 10.1128/jb.00199-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capacity of pathogens to respond to environmental signals, such as iron concentration, is key to bacterial survival and establishment of a successful infection. Bacillus cereus is a widely distributed bacterium with distinct pathogenic properties. Hemolysin II (HlyII) is one of its pore-forming cytotoxins and has been shown to be involved in bacterial pathogenicity in a number of cell and animal models. Unlike many other B. cereus pathogenicity factors, HlyII is not regulated by pleiotropic transcriptional regulator PlcR but is controlled by its own regulator, HlyIIR. Using a combination of in vivo and in vitro techniques, we show that hlyII expression is also negatively regulated by iron by the global regulator Fur via direct interaction with the hlyII promoter. DNase I footprinting and in vitro transcription experiments indicate that Fur prevents RNA polymerase binding to the hlyII promoter. HlyII expression profiles demonstrate that both HlyIIR and Fur regulate HlyII expression in a concerted fashion, with the effect of Fur being maximal in the early stages of bacterial growth. In sum, these results show that Fur serves as a transcriptional repressor for hlyII expression.
Collapse
|
24
|
Tran SL, Guillemet E, Ngo-Camus M, Clybouw C, Puhar A, Moris A, Gohar M, Lereclus D, Ramarao N. Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages. Cell Microbiol 2011; 13:92-108. [PMID: 20731668 DOI: 10.1111/j.1462-5822.2010.01522.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. The precise mechanisms and the bacterial factors allowing B. cereus to circumvent host immune responses remain to be elucidated. We have previously shown that B. cereus induces macrophage cell death by an unknown mechanism. Here we identified the toxic component from the B. cereus supernatant. We report that Haemolysin II (HlyII) provokes macrophage cell death by apoptosis through its pore-forming activity. The HlyII-induced apoptotic pathway is caspase 3 and 8 dependent, thus most likely mediated by the death receptor pathway. Using insects and mice as in vivo models, we show that deletion of hlyII strongly reduces virulence. In addition, we show that after infection of Bombyx mori larvae, the immune cells are apoptotic, demonstrating that HlyII induces apoptosis of phagocytic cells in vivo. Altogether, our results clearly unravel HlyII as a novel virulence protein that induces apoptosis in phagocytic cells in vitro and in vivo.
Collapse
Affiliation(s)
- Seav-Ly Tran
- INRA, Unité MICALIS, UMR 1319, équipe GME, La Minière, 78285 Guyancourt, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tran SL, Guillemet E, Ngo-Camus M, Clybouw C, Puhar A, Moris A, Gohar M, Lereclus D, Ramarao N. Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages. Cell Microbiol 2010. [DOI: 10.1111/j.1462-5822.2010.001522.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Antonenko YN, Perevoshchikova IV, Davydova LI, Agapov IA, Bogush VG. Interaction of recombinant analogs of spider silk proteins 1F9 and 2E12 with phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1172-8. [DOI: 10.1016/j.bbamem.2010.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/24/2022]
|
27
|
Sineva EV, Andreeva-Kovalevskaya ZI, Shadrin AM, Gerasimov YL, Ternovsky VI, Teplova VV, Yurkova TV, Solonin AS. Expression ofBacillus cereushemolysin II inBacillus subtilisrenders the bacteria pathogenic for the crustaceanDaphnia magna. FEMS Microbiol Lett 2009; 299:110-9. [DOI: 10.1111/j.1574-6968.2009.01742.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|