1
|
Kinoshita Y, Xu J, Masuda A, Minamihata K, Kamiya N, Mon H, Fujita R, Kusakabe T, Lee JM. Expression and purification of biologically active human granulocyte-macrophage colony stimulating factor (hGM-CSF) using silkworm-baculovirus expression vector system. Protein Expr Purif 2019; 159:69-74. [PMID: 30917920 DOI: 10.1016/j.pep.2019.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
Abstract
Human granulocyte-macrophage colony stimulating factor (hGM-CSF) is a hematopoietic growth factor. It is widely employed as a therapeutic agent targeting neutropenia in cancer patients undergoing chemotherapy and in patients with AIDS or after bone marrow transplantation. In this study, we constructed the recombinant baculoviruses for the expression of recombinant hGM-CSF (rhGM-CSF) with two small affinity tags (His-tag and Strep-tag) at the N or C-terminus. Compared to N-tagged rhGM-CSF, C-tagged rhGM-CSF was highly recovered from silkworm hemolymph. The purified rhGM-CSF proteins migrated as a diffuse band and were confirmed to hold N-glycosylations. A comparable activity was achieved when commercial hGM-CSF was tested as a control. Considering the high price of hGM-CSF in the market, our results and strategies using silkworm-baculovirus system can become a great reference for mass production of the active rhGM-CSF at a lower cost.
Collapse
Affiliation(s)
- Yurie Kinoshita
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jian Xu
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
2
|
Ramírez-Alanis IA, Renaud JB, García-Lara S, Menassa R, Cardineau GA. Transient co-expression with three O-glycosylation enzymes allows production of GalNAc- O-glycosylated Granulocyte-Colony Stimulating Factor in N. benthamiana. PLANT METHODS 2018; 14:98. [PMID: 30410568 PMCID: PMC6219069 DOI: 10.1186/s13007-018-0363-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/19/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Expression of economically relevant proteins in alternative expression platforms, especially plant expression platforms, has gained significant interest in recent years. A special interest in working with plants as bioreactors for the production of pharmaceutical proteins is related to low production costs, product safety and quality. Among the different properties that plants can also offer for the production of recombinant proteins, protein glycosylation is crucial since it may have an impact on pharmaceutical functionality and/or stability. RESULTS The pharmaceutical glycoprotein human Granulocyte-Colony Stimulating Factor was transiently expressed in Nicotiana benthamiana plants and subjected to mammalian-specific mucin-type O-glycosylation by co-expressing the pharmaceutical protein together with the glycosylation machinery responsible for such post-translational modification. CONCLUSIONS The pharmaceutical glycoprotein human Granulocyte-Colony Stimulating Factor can be expressed in N. benthamiana plants via agroinfiltration with its native mammalian-specific mucin-type O-glycosylation.
Collapse
Affiliation(s)
- Israel A. Ramírez-Alanis
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL Mexico
| | | | - Silverio García-Lara
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL Mexico
| | - Rima Menassa
- Agriculture and Agri-Food Canada, London, ON Canada
- Department of Biology, University of Western Ontario, London, ON Canada
| | - Guy A. Cardineau
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL Mexico
- Arizona State University, Phoenix, AZ 85004-4467 USA
| |
Collapse
|
4
|
Kosobokova EN, Skrypnik KA, Kosorukov VS. Overview of Fusion Tags for Recombinant Proteins. BIOCHEMISTRY (MOSCOW) 2017; 81:187-200. [PMID: 27262188 DOI: 10.1134/s0006297916030019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Virtually all recombinant proteins are now prepared using fusion domains also known as "tags". The use of tags helps to solve some serious problems: to simplify procedures of protein isolation, to increase expression and solubility of the desired protein, to simplify protein refolding and increase its efficiency, and to prevent proteolysis. In this review, advantages and disadvantages of such fusion tags are analyzed and data on both well-known and new tags are generalized. The authors own data are also presented.
Collapse
Affiliation(s)
- E N Kosobokova
- Blokhin Russian Cancer Research Center, Moscow, 115478, Russia.
| | | | | |
Collapse
|
6
|
Tian L, Sun SSM. Ubiquitin fusion expression and tissue-dependent targeting of hG-CSF in transgenic tobacco. BMC Biotechnol 2011; 11:91. [PMID: 21985646 PMCID: PMC3212944 DOI: 10.1186/1472-6750-11-91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/11/2011] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human granulocyte colony-stimulating factor (hG-CSF) is an important human cytokine which has been widely used in oncology and infection protection. To satisfy clinical needs, expression of recombinant hG-CSF has been studied in several organisms, including rice cell suspension culture and transient expression in tobacco leaves, but there was no published report on its expression in stably transformed plants which can serve as a more economical expression platform with potential industrial application. RESULTS In this study, hG-CSF expression was investigated in transgenic tobacco leaves and seeds in which the accumulation of hG-CSF could be enhanced through fusion with ubiquitin by up to 7 fold in leaves and 2 fold in seeds, leading to an accumulation level of 2.5 mg/g total soluble protein (TSP) in leaves and 1.3 mg/g TSP in seeds, relative to hG-CSF expressed without a fusion partner. Immunoblot analysis showed that ubiquitin was processed from the final protein product, and ubiquitination was up-regulated in all transgenic plants analyzed. Driven by CaMV 35S promoter and phaseolin signal peptide, hG-CSF was observed to be secreted into apoplast in leaves but deposited in protein storage vacuole (PSV) in seeds, indicating that targeting of the hG-CSF was tissue-dependent in transgenic tobacco. Bioactivity assay showed that hG-CSF expressed in both seeds and leaves was bioactive to support the proliferation of NFS-60 cells. CONCLUSIONS In this study, the expression of bioactive hG-CSF in transgenic plants was improved through ubiquitin fusion strategy, demonstrating that protein expression can be enhanced in both plant leaves and seeds through fusion with ubiquitin and providing a typical case of tissue-dependent expression of recombinant protein in transgenic plants.
Collapse
Affiliation(s)
- Li Tian
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Samuel SM Sun
- Life Science Division, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|