1
|
Yin XR, Xie XL, Xia XJ, Yu JQ, Ferguson IB, Giovannoni JJ, Chen KS. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:403-12. [PMID: 27037684 DOI: 10.1111/tpj.13178] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/19/2016] [Accepted: 03/23/2016] [Indexed: 05/07/2023]
Abstract
Chlorophyll degradation naturally occurs during plant senescence. However, in fruit such as citrus, it is a positive characteristic, as degreening is an important colour development contributing to fruit quality. In the present work, Citrus sinensis Osbeck, cv. Newhall fruit was used as a model for chlorophyll degradation. An ethylene response factor, CitERF13, was isolated and its transcriptional changes were closely correlated with fruit peel degreening during development or in response to ethylene. Dual-luciferase and yeast one-hybrid assays, as well as motif mutation, indicated that CitERF13 directly binds to the CitPPH promoter and enhances its activity. Transient and stable over-expression of CitERF13 resulted in rapid chlorophyll degradation in Nicotiana tabacum leaves and led to accumulation of pheophorbide (Pheide) a, a metabolite of pheophorbide hydrolase (PPH). Similar results were observed from transient transformation of CitERF13 in citrus fruit peel. Moreover, this function of CitERF13 was conserved within Arabidopsis and tomato, as the homologs AtERF17 and SlERF16 similarly acted as activators of PPH genes and accelerators of chlorophyll degradation.
Collapse
Affiliation(s)
- Xue-Ren Yin
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xiu-Lan Xie
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Xiao-Jian Xia
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Jing-Quan Yu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| | - Ian B Ferguson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- New Zealand Institute for Plant & Food Research Limited, Private Bag, 92169, Auckland, New Zealand
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- US Department of Agriculture/Agriculture Research Service, Robert W. Holley Centre for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Kun-Song Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
2
|
Belyaeva OB, Litvin FF. Mechanisms of phototransformation of protochlorophyllide into chlorophyllide. BIOCHEMISTRY (MOSCOW) 2015; 79:337-48. [PMID: 24910207 DOI: 10.1134/s0006297914040038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this review is to summarize and discuss data obtained in studies on the mechanisms of the primary photophysical and photochemical reactions of protochlorophyllide photoreduction in plant materials (etiolated leaves and leaf homogenates) and in model systems. Based on the results of numerous studies, it can be stated that the reduction of active forms of the chlorophyll precursor is a multistep process comprising two or three short-lived intermediates characterized by a singlet ESR signal. The first intermediate is probably a complex with charge transfer between protochlorophyllide and the hydride ion donor NADPH. The conserved tyrosine residue Tyr193 of protochlorophyllide oxidoreductase is the donor of the second proton.
Collapse
Affiliation(s)
- O B Belyaeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119992, Russia.
| | | |
Collapse
|
3
|
Camargo ER, Senseman SA, McCauley GN, Bowe S, Harden J, Guice JB. Interaction between saflufenacil and imazethapyr in red rice (Oryza ssp.) and hemp sesbania (Sesbania exaltata) as affected by light intensity. PEST MANAGEMENT SCIENCE 2012; 68:1010-8. [PMID: 22323402 DOI: 10.1002/ps.3260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/09/2011] [Accepted: 12/22/2011] [Indexed: 05/24/2023]
Abstract
BACKGROUND Saflufenacil is a broadleaf herbicide for preplant burndown and pre-emergence applications in various crops. This study was established to evaluate the absorption and translocation of saflufenacil in hemp sesbania and imazethapyr in red rice as a function of their post-emergence interaction and light intensity. RESULTS Imazethapyr plus saflufenacil provided a greater uptake (30%) and translocation (35%) of (14) C-imazethapyr than imazethapyr alone. In the section above treated leaf (ATL), a higher percentage of the absorbed imazethapyr (23%) was quantified in the imazethapyr plus saflufenacil treatment after 168 h. Faster basipetal movement of imazethapyr was identified under higher light availability. Absorption of (14) C-saflufenacil ranged from approximately 40 to 60% among herbicide and light intensity treatments. At 12 and 24 h after treatment (HAT) a greater percentage (15-20%) of the absorbed saflufenacil was quantified above the treated leaf at the two lower light intensities. Similar trends were observed for basipetal movement of saflufenacil. CONCLUSION Saflufenacil enhanced absorption, overall translocation and acropetal movement of imazethapyr in the TX4 red rice. Basipetal movement of imazethapyr was faster under higher light intensities. Overall, imazethapyr improved absorption of saflufenacil in hemp sesbania plants. Reduction in light intensity resulted in greater translocation of saflufenacil, promoting acropetal and basipetal distribution at the two lower light intensity treatments.
Collapse
Affiliation(s)
- Edinalvo R Camargo
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | |
Collapse
|