1
|
Zorov DB, Abramicheva PA, Andrianova NV, Babenko VA, Zorova LD, Zorov SD, Pevzner IB, Popkov VA, Semenovich DS, Yakupova EI, Silachev DN, Plotnikov EY, Sukhikh GT. Mitocentricity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:223-240. [PMID: 38622092 DOI: 10.1134/s0006297924020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/17/2024]
Abstract
Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.
Collapse
Affiliation(s)
- Dmitry B Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Polina A Abramicheva
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nadezda V Andrianova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valentina A Babenko
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Ljubava D Zorova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Savva D Zorov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina B Pevzner
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Vasily A Popkov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Dmitry S Semenovich
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elmira I Yakupova
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis N Silachev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Egor Y Plotnikov
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
2
|
Jia B, Ye J, Gan L, Li R, Zhang M, Sun D, Weng L, Xiong Y, Xu J, Zhang P, Huang W, Zheng M, Wang T. Mitochondrial antioxidant SkQ1 decreases inflammation following hemorrhagic shock by protecting myocardial mitochondria. Front Physiol 2022; 13:1047909. [PMID: 36467681 PMCID: PMC9709459 DOI: 10.3389/fphys.2022.1047909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
Background: Hemorrhagic shock (HS) is a type of hypovolemic shock characterized by hemodynamic instability, tissue hypoperfusion and cellular hypoxia. In pathophysiology, the gradual accumulation of reactive oxygen species (ROS) damages the mitochondria, leading to irreversible cell damage and the release of endogenous damage-associated molecular patterns (DAMPs) including mitochondrial DAMPs (MTDs), eventually triggering the inflammatory response. The novel mitochondria-targeted antioxidant SkQ1 (Visomitin) effectively eliminate excessive intracellular ROS and exhibits anti-inflammatory effects; however, the specific role of SkQ1 in HS has not yet been explicated. Methods and results: A 40% fixed-blood-loss HS rat model was established in this study. Transmission electron microscopy showed that after HS, the myocardial mitochondrial ultrastructure was damaged and the mtDNA release in circulation was increased and the differentially expressed genes were significantly enriched in mitochondrial and ROS-related pathways. Mitochondria-targeted antioxidant SkQ1 attenuated the increased ROS induced by HS in myocardial tissues and by oxygen-glucose deprivation (OGD) in cardiomyocytes. Ultrastructurally, SkQ1 protected the myocardial mitochondrial structure and reduced the release of the peripheral blood mtDNA after HS. RNA-seq transcriptome analysis showed that 56.5% of the inflammation-related genes, which altered after HS, could be significantly reversed after SkQ1 treatment. Moreover, ELISA indicated that SkQ1 significantly reversed the HS-induced increases in the TNF-α, IL-6, and MCP-1 protein levels in rat peripheral blood. Conclusion: HS causes damage to the rat myocardial mitochondrial structure, increases mtDNA release and ROS contents, activates the mitochondrial and ROS-related pathways, and induces systemic inflammatory response. The mitochondrial antioxidant SkQ1 can improve rat myocardial mitochondria ultrastructure, reduce mtDNA and ROS contents, and decrease inflammation by protecting myocardial mitochondria, thereby playing a novel protective role in HS.
Collapse
Affiliation(s)
- Bo Jia
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Jingjing Ye
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lebin Gan
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Rui Li
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Mengwei Zhang
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Diya Sun
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Lin Weng
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Yufei Xiong
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Jun Xu
- Department of Gastroenterology, Clinical Center of Immune-Mediated Digestive Diseases, Peking University People’s Hospital, Beijing, China
| | - Peng Zhang
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Wei Huang
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| | - Ming Zheng
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People’s Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
3
|
Li N, Wang X, Wang P, Fan H, Hou S, Gong Y. Emerging medical therapies in crush syndrome - progress report from basic sciences and potential future avenues. Ren Fail 2021; 42:656-666. [PMID: 32662306 PMCID: PMC7470165 DOI: 10.1080/0886022x.2020.1792928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Crush injury is a disease that is commonly found in victims of earthquakes, debris flows, mine disasters, explosions, terrorist attacks, local wars, and other accidents. The complications that arise due to the crush injury inflicted on victims give rise to crush syndrome (CS). If not treated in time, the mortality rate of CS is very high. The most important measure that can be taken to reduce mortality in such situations is to immediately start treatment. However, the traditional treatment methods such as fluid resuscitation, diuresis, and hemodialysis are not feasible enough to be carried out at the disaster scene. So there is a need for developing new treatments that are efficient and convenient. Because it is difficult to diagnose in the disaster area and reach the treatment equipment and treat on time. It has become a new research needs to be directed into identifying new medical treatment targets and methods using the etiology and pathophysiological mechanisms of CS. In recent years, a large number of new anti-oxidant and anti-inflammatory drug therapies have been shown to be highly efficacious in CS rat/mouse models. Some of them are expected to become specific drugs for the emergency treatment of a large number of patients who may develop CS in the aftermath of earthquakes, wars, and other disasters in the future. Hence, we have reviewed the latest research on the medical therapy of CS as a source for anyone wishing to pursue research in this direction.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xinyue Wang
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China.,General Hospital of Tianjin Medical University, Tianjin, China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
4
|
Mohsenpour H, Pesce M, Patruno A, Bahrami A, Pour PM, Farzaei MH. A Review of Plant Extracts and Plant-Derived Natural Compounds in the Prevention/Treatment of Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2021; 22:E833. [PMID: 33467663 PMCID: PMC7830094 DOI: 10.3390/ijms22020833] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is one of the major drawbacks of mortality and causes significant short/long-term neurological dysfunction in newborn infants worldwide. To date, due to multifunctional complex mechanisms of brain injury, there is no well-established effective strategy to completely provide neuroprotection. Although therapeutic hypothermia is the proven treatment for hypoxic-ischemic encephalopathy (HIE), it does not completely chang outcomes in severe forms of HIE. Therefore, there is a critical need for reviewing the effective therapeutic strategies to explore the protective agents and methods. In recent years, it is widely believed that there are neuroprotective possibilities of natural compounds extracted from plants against HIE. These natural agents with the anti-inflammatory, anti-oxidative, anti-apoptotic, and neurofunctional regulatory properties exhibit preventive or therapeutic effects against experimental neonatal HI brain damage. In this study, it was aimed to review the literature in scientific databases that investigate the neuroprotective effects of plant extracts/plant-derived compounds in experimental animal models of neonatal HI brain damage and their possible underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Hadi Mohsenpour
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 75333–67427, Iran;
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Azam Bahrami
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| |
Collapse
|
5
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
6
|
Plotnikov EY, Zorov DB. Pros and Cons of Use of Mitochondria-Targeted Antioxidants. Antioxidants (Basel) 2019; 8:antiox8080316. [PMID: 31426455 PMCID: PMC6719234 DOI: 10.3390/antiox8080316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial targeting is a novel strategy, which addresses pathologies originating from mitochondrial dysfunction. Here, one of the most potent therapeutics arises from the group of mitochondria-targeted antioxidants, which specifically quench mitochondrial reactive oxygen species (ROS). They show very high efficacy in the treatment of a diverse array of pathologies encountered in this Special Issue of Antioxidants. However, despite very encouraging results in the use of mitochondria-targeted antioxidants, the mechanistic principle of delivering these agents is, to some extent, counterproductive to the goal of selectively treating a population of damaged mitochondria. The main problem that arises is that injured mitochondria may carry a lower membrane potential when compared with normal ones and as a result, injured mitochondria are capable of taking up less therapeutic antioxidants than healthy mitochondria. Another problem is that the intracellular activity of mitochondrial ROS differs from cytosolic ROS in that they carry specific intracellular functions which are maintained at a delicate equilibrium and which may be disturbed under careless use of antioxidant doses. Consequently, understanding the overall benefit of targeting dysfunctional mitochondria in pathological tissue requires furthering the development of alternative techniques to target mitochondria.
Collapse
Affiliation(s)
- Egor Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia
| | - Dmitry B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| |
Collapse
|
7
|
Fetisova EK, Muntyan MS, Lyamzaev KG, Chernyak BV. Therapeutic Effect of the Mitochondria-Targeted Antioxidant SkQ1 on the Culture Model of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2082561. [PMID: 31354902 PMCID: PMC6636568 DOI: 10.1155/2019/2082561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/18/2019] [Accepted: 06/09/2019] [Indexed: 01/04/2023]
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease of unknown etiology characterized by inflammation, demyelination, and axonal degeneration that affects both the white and gray matter of CNS. Recent large-scale epidemiological and genomic studies identified several genetic and environmental risk factors for the disease. Among them are environmental factors of infectious origin, possibly causing MS, which include Epstein-Barr virus infection, reactivation of some endogenous retrovirus groups, and infection by pathogenic bacteria (mycobacteria, Chlamydia pneumoniae, and Helicobacter pylori). However, the nature of the events leading to the activation of immune cells in MS is mostly unknown and there is no effective therapy against the disease. Amazingly, whatever the cause of the disease, signs of damage to the nerve tissue with MS lesions were the same as with infectious leprosy, while in the latter case nitrozooxidative stress was suggested as the main cause of the nerve damage. With this in mind and following the hypothesis that excessive production of mitochondrial reactive oxygen species critically contributes to MS pathogenesis, we studied the effect of mitochondria-targeted antioxidant SkQ1 in an in vitro MS model of the primary oligodendrocyte culture of the cerebellum, challenged with lipopolysaccharide (LPS). SkQ1 was found to accumulate in the mitochondria of oligodendrocytes and microglial cells, and it was also found to prevent LPS-induced inhibition of myelin production in oligodendrocytes. The results implicate that mitochondria-targeted antioxidants could be promising candidates as components of a combined therapy for MS and related neurological disorders.
Collapse
Affiliation(s)
- Elena K. Fetisova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria S. Muntyan
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. Biomed Pharmacother 2019; 111:1478-1498. [DOI: 10.1016/j.biopha.2018.11.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
|
9
|
Rovira-Llopis S, Apostolova N, Bañuls C, Muntané J, Rocha M, Victor VM. Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeutic Targets. Antioxid Redox Signal 2018; 29:749-791. [PMID: 29256638 DOI: 10.1089/ars.2017.7313] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Type 2 diabetes mellitus and hyperglycemia can lead to the development of comorbidities such as atherosclerosis and microvascular/macrovascular complications. Both type 2 diabetes and its complications are related to mitochondrial dysfunction and oxidative stress. Type 2 diabetes is also a chronic inflammatory condition that leads to inflammasome activation and the release of proinflammatory mediators, including interleukins (ILs) IL-1β and IL-18. Moreover, sirtuins are energetic sensors that respond to metabolic load, which highlights their relevance in metabolic diseases, such as type 2 diabetes. Recent Advances: Over the past decade, great progress has been made in clarifying the signaling events regulated by mitochondria, inflammasomes, and sirtuins. Nod-like receptor family pyrin domain containing 3 (NLRP3) is the best characterized inflammasome, and the generation of oxidant species seems to be critical for its activation. NLRP3 inflammasome activation and altered sirtuin levels have been observed in type 2 diabetes. Critical Issue: Despite increasing evidence of the relationship between the NLRP3 inflammasome, mitochondrial dysfunction, and oxidative stress and of their participation in type 2 diabetes physiopathology, therapeutic strategies to combat type 2 diabetes that target NLRP3 inflammasome and sirtuins are yet to be consolidated. FUTURE DIRECTIONS In this review article, we attempt to provide an overview of the existing literature concerning the crosstalk between mitochondrial impairment and the inflammasome, with particular attention to cellular and mitochondrial redox metabolism and the potential role of the NLRP3 inflammasome and sirtuins in the pathogenesis of type 2 diabetes. In addition, we discuss potential targets for therapeutic intervention based on these molecular interactions. Antioxid. Redox Signal. 29, 749-791.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Nadezda Apostolova
- 2 Department of Pharmacology, University of Valencia , Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntané
- 3 Department of General Surgery, Hospital University "Virgen del Rocío"/IBiS/CSIC/University of Seville , Seville, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
| | - Victor M Victor
- 1 Service of Endocrinology and Nutrition, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- 4 CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED de Enfermedades Hepáticas y Digestivas (CIBERehd) , Madrid, Spain
- 5 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
10
|
Neuroprotective Effects of Mitochondria-Targeted Plastoquinone in a Rat Model of Neonatal Hypoxic⁻Ischemic Brain Injury. Molecules 2018; 23:molecules23081871. [PMID: 30060443 PMCID: PMC6222533 DOI: 10.3390/molecules23081871] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
Neonatal hypoxia⁻ischemia is one of the main causes of mortality and disability of newborns. To study the mechanisms of neonatal brain cell damage, we used a model of neonatal hypoxia⁻ischemia in seven-day-old rats, by annealing of the common carotid artery with subsequent hypoxia of 8% oxygen. We demonstrate that neonatal hypoxia⁻ischemia causes mitochondrial dysfunction associated with high production of reactive oxygen species, which leads to oxidative stress. Targeted delivery of antioxidants to the mitochondria can be an effective therapeutic approach to treat the deleterious effects of brain hypoxia⁻ischemia. We explored the neuroprotective properties of the mitochondria-targeted antioxidant SkQR1, which is the conjugate of a plant plastoquinone and a penetrating cation, rhodamine 19. Being introduced before or immediately after hypoxia⁻ischemia, SkQR1 affords neuroprotection as judged by the diminished brain damage and recovery of long-term neurological functions. Using vital sections of the brain, SkQR1 has been shown to reduce the development of oxidative stress. Thus, the mitochondrial-targeted antioxidant derived from plant plastoquinone can effectively protect the brain of newborns both in pre-ischemic and post-stroke conditions, making it a promising candidate for further clinical studies.
Collapse
|
11
|
The delayed protective effect of GK-2, а dipeptide mimetic of Nerve Growth Factor, in a model of rat traumatic brain injury. Brain Res Bull 2018; 140:148-153. [PMID: 29730416 DOI: 10.1016/j.brainresbull.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 11/24/2022]
Abstract
The delayed protective effect of GK-2, a dipeptide mimetic of Nerve Growth Factor, was investigated on the model of focal one-sided traumatic brain injury (TBI) of the sensorimotor cortex region on the 180th day after the injury. TBI caused a reliably disruption of the functions of the limbs contralateral to injury focus. The intraperitoneal administration of GK-2 (1 mg/kg) from 1st to 4th and from 7th to 10th days after TBI reduced the impairment of the motor functions of the limbs. This therapeutic effect significant manifested itself from the 7th day and continued until the end of the experiment - on the 180th day after TBI. Morphological studies of the animal brains on the 180th day after TBI demonstrated a decrease in the number of neurons in the V layer of the cerebral cortex and a decrease in the thickness of the corpus callosum. The treatment of animals with GK-2 after TBI statistically significant prevented a decrease in the density of neurons in the ipsilateral hemisphere and a decrease in the thickness of the corpus callosum in the contralateral hemisphere in comparison with untreated animals. Additionally, we showed in vitro that GK-2 exhibits neuroprotective properties under oxidative stress in primary hippocampal cultures. Our results demonstrate that the use of GK-2 at the early stages of development of traumatic brain damage can prevent such delayed damage as neuronal and axonal degeneration as well as reduce TBI-related disruptions of brain functions.
Collapse
|
12
|
Skulachev MV, Skulachev VP. Programmed aging of mammals: Proof of concept and prospects of biochemical approaches for anti-aging therapy. BIOCHEMISTRY (MOSCOW) 2017; 82:1403-1422. [DOI: 10.1134/s000629791712001x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
The age-associated loss of ischemic preconditioning in the kidney is accompanied by mitochondrial dysfunction, increased protein acetylation and decreased autophagy. Sci Rep 2017; 7:44430. [PMID: 28294175 PMCID: PMC5353572 DOI: 10.1038/srep44430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/07/2017] [Indexed: 12/27/2022] Open
Abstract
In young rats, ischemic preconditioning (IPC), which consists of 4 cycles of ischemia and reperfusion alleviated kidney injury caused by 40-min ischemia. However,old rats lost their ability to protect the ischemic kidney by IPC. A similar aged phenotype was demonstrated in 6-month-old OXYS rats having signs of premature aging. In the kidney of old and OXYS rats, the levels of acetylated nuclear proteins were higher than in young rats, however, unlike in young rats, acetylation levels in old and OXYS rats were further increased after IPC. In contrast to Wistar rats, age-matched OXYS demonstrated no increase in lysosome abundance and LC3 content in the kidney after ischemia/reperfusion. The kidney LC3 levels were also lower in OXYS, even under basal conditions, and mitochondrial PINK1 and ubiquitin levels were higher, suggesting impaired mitophagy. The kidney mitochondria from old rats contained a population with diminished membrane potential and this fraction was expanded by IPC. Apparently, oxidative changes with aging result in the appearance of malfunctioning renal mitochondria due to a low efficiency of autophagy. Elevated protein acetylation might be a hallmark of aging which is associated with a decreased autophagy, accumulation of dysfunctional mitochondria, and loss of protection against ischemia by IPC.
Collapse
|
14
|
Jankauskas SS, Andrianova NV, Alieva IB, Prusov AN, Matsievsky DD, Zorova LD, Pevzner IB, Savchenko ES, Pirogov YA, Silachev DN, Plotnikov EY, Zorov DB. Dysfunction of Kidney Endothelium after Ischemia/Reperfusion and Its Prevention by Mitochondria-Targeted Antioxidant. BIOCHEMISTRY (MOSCOW) 2017; 81:1538-1548. [PMID: 28259131 DOI: 10.1134/s0006297916120154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One of the most important pathological consequences of renal ischemia/reperfusion (I/R) is kidney malfunctioning. I/R leads to oxidative stress, which affects not only nephron cells but also cells of the vascular wall, especially endothelium, resulting in its damage. Assessment of endothelial damage, its role in pathological changes in organ functioning, and approaches to normalization of endothelial and renal functions are vital problems that need to be resolved. The goal of this study was to examine functional and morphological impairments occurring in the endothelium of renal vessels after I/R and to explore the possibility of alleviation of the severity of these changes using mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decylrhodamine 19 (SkQR1). Here we demonstrate that 40-min ischemia with 10-min reperfusion results in a profound change in the structure of endothelial cells mitochondria, accompanied by vasoconstriction of renal blood vessels, reduced renal blood flow, and increased number of endothelial cells circulating in the blood. Permeability of the kidney vascular wall increased 48 h after I/R. Injection of SkQR1 improves recovery of renal blood flow and reduces vascular resistance of the kidney in the first minutes of reperfusion; it also reduces the severity of renal insufficiency and normalizes permeability of renal endothelium 48 h after I/R. In in vitro experiments, SkQR1 provided protection of endothelial cells from death provoked by oxygen-glucose deprivation. On the other hand, an inhibitor of NO-synthases, L-nitroarginine, abolished the positive effects of SkQR1 on hemodynamics and protection from renal failure. Thus, dysfunction and death of endothelial cells play an important role in the development of reperfusion injury of renal tissues. Our results indicate that the major pathogenic factors in the endothelial damage are oxidative stress and mitochondrial damage within endothelial cells, while mitochondria-targeted antioxidants could be an effective tool for the protection of tissue from negative effects of ischemia.
Collapse
Affiliation(s)
- S S Jankauskas
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Isaev NK, Stelmashook EV, Genrikhs EE, Korshunova GA, Sumbatyan NV, Kapkaeva MR, Skulachev VP. Neuroprotective properties of mitochondria-targeted antioxidants of the SkQ-type. Rev Neurosci 2016; 27:849-855. [DOI: 10.1515/revneuro-2016-0036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/13/2016] [Indexed: 12/20/2022]
Abstract
AbstractIn 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6′-plastoquinonyl)decylrhodamine], have a neuroprotective action. It was shown that intraperitoneal injections of SkQR1 (0.5–1 μmol/kg) 1 day before ischemia significantly decreased the damaged brain area. Later, we studied in more detail the anti-ischemic action of this antioxidant in a model of experimental focal ischemia provoked by unilateral intravascular occlusion of the middle cerebral artery. The neuroprotective action of SkQ family compounds (SkQR1, SkQ1, SkQTR1, SkQT1) was manifested through the decrease in trauma-induced neurological deficit in animals and prevention of amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. At present, most neurophysiologists suppose that long-term potentiation underlies cellular mechanisms of memory and learning. They consider inhibition of this process by amyloid-β1-42as anin vitromodel of memory disturbance in Alzheimer’s disease. Further development of the above studies revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer’s disease.
Collapse
Affiliation(s)
- Nickolay K. Isaev
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Elena V. Stelmashook
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Elisaveta E. Genrikhs
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Galina A. Korshunova
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| | - Natalya V. Sumbatyan
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| | - Marina R. Kapkaeva
- 2Brain Research Department Research Center of Neurology, 125367 Moscow, Russian Federation
| | - Vladimir P. Skulachev
- 1Department of Bioenergetics, Belozersky Research Institute of Physico-Chemical Biology Lomonosov Moscow State University, Leninsky Gory, 1, b. 40, 119992 Moscow, Russian Federation
| |
Collapse
|
16
|
Morosanova MA, Plotnikov EY, Zorova LD, Pevzner IB, Popkov VA, Silachev DN, Jankauskas SS, Babenko VA, Zorov DB. Mechanisms of inflammatory injury of renal tubular cells in a cellular model of pyelonephritis. BIOCHEMISTRY (MOSCOW) 2016; 81:1240-1250. [DOI: 10.1134/s000629791611002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Vnukov VV, Gutsenko OI, Milutina NP, Kornienko IV, Ananyan AA, Danilenko AO, Panina SB, Plotnikov AA, Makarenko MS. Influence of SkQ1 on Expression of Nrf2 Gene, ARE-Controlled Genes of Antioxidant Enzymes and Their Activity in Rat Blood Leukocytes under Oxidative Stress. BIOCHEMISTRY (MOSCOW) 2016; 80:1598-605. [PMID: 26638685 DOI: 10.1134/s0006297915120081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study demonstrated that oxidative stress induced by hyperoxia (0.5 MPa for 90 min) resulted in reduction of mRNA levels of transcription factor Nrf2 and Nrf2-induced genes encoding antioxidant enzymes (SOD1, CAT, GPx4) in peripheral blood leukocytes of rats. The changes in gene expression profiles under hyperoxia were accompanied by disbalance of activity of antioxidant enzymes in the leukocytes, namely activation of superoxide dismutase and inhibition of catalase, glutathione peroxidase, and glutathione-S-transferase. Pretreatment of rats with SkQ1 (50 nmol/kg for five days) significantly increased mRNA levels of transcription factor Nrf2 and Nrf2-induced genes encoding antioxidant enzymes SOD2 and GPx4 and normalized the transcriptional activity of the SOD1 and CAT genes in the leukocytes in hyperoxia-induced oxidative stress. At the same time, the activity of catalase and glutathione peroxidase was increased, and the activity of superoxide dismutase and glutathione-S-transferase returned to the control level. It is hypothesized that protective effect of SkQ1 in hyperoxia-induced oxidative stress can be realized via a direct antioxidant property and the stimulation of the Keap1/Nrf2 redox-sensitive signaling system.
Collapse
Affiliation(s)
- V V Vnukov
- Southern Federal University, Academy of Biology and Biotechnology, Department of Biochemistry and Microbiology, Rostov-on-Don, 344090, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stelmashook EV, Stavrovskaya AV, Yamshchikova NG, Ol'shanskii AS, Kapay NA, Popova OV, Khaspekov LG, Skrebitsky VG, Isaev NK. Mitochondria-Targeted Plastoquinone Antioxidant SkQR1 Has Positive Effect on Memory of Rats. BIOCHEMISTRY (MOSCOW) 2016; 80:592-5. [PMID: 26071778 DOI: 10.1134/s0006297915050119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A single intraperitoneal injection to rats of the mitochondria-targeted plastoquinone antioxidant SkQR1 at dose 1 µmol/kg significantly improved reproduction by the rats of the passive avoidance conditional reflex. In vitro experiments on hippocampal slices showed that a single intraperitoneal injection of SkQR1 24 h before the preparation of the slice significantly increases the synaptic transmission efficiency of the pyramidal neurons of the CA1 field. The findings indicate that SkQR1 has a positive effect on memory processes.
Collapse
Affiliation(s)
- E V Stelmashook
- Research Center of Neurology, Russian Academy of Medical Sciences, Moscow, 125367, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Galkin II, Pletjushkina OY, Zinovkin RA, Zakharova VV, Birjukov IS, Chernyak BV, Popova EN. Mitochondria-targeted antioxidants prevent TNFα-induced endothelial cell damage. BIOCHEMISTRY (MOSCOW) 2015; 79:124-30. [PMID: 24794727 DOI: 10.1134/s0006297914020059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Increased serum level of tumor necrosis factor α (TNFα) causes endothelial dysfunction and leads to serious vascular pathologies. TNFα signaling is known to involve reactive oxygen species (ROS). Using mitochondria-targeted antioxidant SkQR1, we studied the role of mitochondrial ROS in TNFα-induced apoptosis of human endothelial cell line EAhy926. We found that 0.2 nM SkQR1 prevents TNFα-induced apoptosis. SkQR1 has no influence on TNFα-dependent proteolytic activation of caspase-8 and Bid, but it inhibits cytochrome c release from mitochondria and cleavage of caspase-3 and its substrate PARP. SkQ analogs lacking the antioxidant moieties do not prevent TNFα-induced apoptosis. The antiapoptotic action of SkQR1 may be related to other observations made in these experiments, namely SkQR1-induced increase in Bcl-2 and corresponding decrease in Bax as well as p53. These results indicate that mitochondrial ROS production is involved in TNFα-initiated endothelial cell death, and they suggest the potential of mitochondria-targeted antioxidants as vasoprotectors.
Collapse
Affiliation(s)
- I I Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Silachev DN, Plotnikov EY, Zorova LD, Pevzner IB, Sumbatyan NV, Korshunova GA, Gulyaev MV, Pirogov YA, Skulachev VP, Zorov DB. Neuroprotective Effects of Mitochondria-Targeted Plastoquinone and Thymoquinone in a Rat Model of Brain Ischemia/Reperfusion Injury. Molecules 2015; 20:14487-503. [PMID: 26270657 PMCID: PMC6332348 DOI: 10.3390/molecules200814487] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
We explored the neuroprotective properties of natural plant-derived antioxidants plastoquinone and thymoquinone (2-demethylplastoquinone derivative) modified to be specifically accumulated in mitochondria. The modification was performed through chemical conjugation of the quinones with penetrating cations: Rhodamine 19 or tetraphenylphosphonium. Neuroprotective properties were evaluated in a model of middle cerebral artery occlusion. We demonstrate that the mitochondria-targeted compounds, introduced immediately after reperfusion, possess various neuroprotective potencies as judged by the lower brain damage and higher neurological status. Plastoquinone derivatives conjugated with rhodamine were the most efficient, and the least efficiency was shown by antioxidants conjugated with tetraphenylphosphonium. Antioxidants were administered intraperitoneally or intranasally with the latter demonstrating a high level of penetration into the brain tissue. The therapeutic effects of both ways of administration were similar. Long-term administration of antioxidants in low doses reduced the neurological deficit, but had no effect on the volume of brain damage. At present, cationic decylrhodamine derivatives of plastoquinone appear to be the most promising anti-ischemic mitochondria-targeted drugs of the quinone family. We suggest these antioxidants could be potentially used for a stroke treatment.
Collapse
Affiliation(s)
- Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Ljubava D Zorova
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
- International Laser Center, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 62, 119992 Moscow, Russia.
| | - Irina B Pevzner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Natalia V Sumbatyan
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 3, 119992 Moscow, Russia.
| | - Galina A Korshunova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Mikhail V Gulyaev
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Lomonosovsky Prospekt, House 31-5, 117192 Moscow, Russia.
| | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 2, 119992 Moscow, Russia.
| | - Vladimir P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia.
- Institute of Mitoengineering, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 73A, 119992 Moscow, Russia.
| |
Collapse
|
21
|
Apostolova N, Victor VM. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 2015; 22:686-729. [PMID: 25546574 PMCID: PMC4350006 DOI: 10.1089/ars.2014.5952] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules.
Collapse
Affiliation(s)
- Nadezda Apostolova
- 1 Faculty of Health Sciences, University Jaume I , Castellón de la Plana, Spain
| | | |
Collapse
|
22
|
Genrikhs EE, Stelmashook EV, Popova OV, Kapay NA, Korshunova GA, Sumbatyan NV, Skrebitsky VG, Skulachev VP, Isaev NK. Mitochondria-targeted antioxidant SkQT1 decreases trauma-induced neurological deficit in rat and prevents amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. J Drug Target 2015; 23:347-52. [PMID: 25585580 DOI: 10.3109/1061186x.2014.997736] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study assesses a protective effect of a mitochondria-targeted antioxidant SkQT1 (a mixture of 10-(6'-toluquinonyl) decyltriphenylphosphonium and 10-(5'-toluquinonyl) decyltriphenylphosphonium in proportion of 1.4:1), using an open focal trauma model of the rat brain sensorimotor cortex and a model of amyloid-beta1-42 (Abeta)-induced impairment of hippocampal long-term potentiation (LTP), a kind of synaptic plasticity associated with learning and memory. It was found that a trauma-induced neurological deficit could be partially improved with daily intraperitoneal injections of SkQT1 (250 nmol/kg) for 5 days after the trauma. Neither an analog of SkQT1 without thymoquinone (C12TPP) nor original thymoquinone without a cation residue was effective to improve such conditions. In the SkQ molecule, the phosphonium cation can be replaced by the rhodamine 19 cation, with the SkQTR1 being still active in the treatment of the neurological deficit. Application of 200 nM Abeta to rat hippocampal slices impaired the induction of LTP in the hippocampal CA1 pyramidal layer. A single intraperitoneal injection of SkQT1 (250 nmol/kg body weight) made 24 h before the slice preparation prevented the harmful effect of Abeta on the LTP. Thus mitochondria-targeted antioxidants, containing thymoquinone, have neuroprotective properties.
Collapse
Affiliation(s)
- Elisaveta E Genrikhs
- Research Center of Neurology, Russian Academy of Medical Sciences , Moscow , Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fetisova EK, Antoschina MM, Cherepanynets VD, Izumov DS, Kireev II, Kireev RI, Lyamzaev KG, Riabchenko NI, Chernyak BV, Skulachev VP. Radioprotective effects of mitochondria-targeted antioxidant SkQR1. Radiat Res 2014; 183:64-71. [PMID: 25496313 DOI: 10.1667/rr13708.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We show here that mitochondria-targeted antioxidant composed of plastoquinone conjugated through hydrocarbon linker with cationic rhodamine 19 (SkQR1) protected against nuclear DNA damage induced by gamma radiation in K562 erythroleukemia cells. We also demonstrate that SkQR1 prevented the early (1 h postirradiation) accumulation of phosphorylated histone H2AX (γ-H2AX) an indicator of DNA double-strand break formation, as well as the radiation-induced increase in chromosomal aberrations. These data suggested that nuclear DNA damage induced by gamma radiation may be mediated by mitochondrial reactive oxygen species (ROS) production. We show that SkQR1 suppressed delayed accumulation of ROS 32 h after irradiation probably by inhibiting mitochondrial ROS-induced ROS release mechanisms. This suggests that mitochondria-targeted antioxidants may protect cells from the late consequences of radiation exposure related to delayed oxidative stress. We have previously reported that SkQRl is the substrate of multidrug resistance pump P-glycoproten (Pgp 170) and selectively protects Pgp 170-negative cells against oxidative stress. In line with this finding, we demonstrate here that SkQR1 did not protect Pgp170-positive K562 subline against DNA damage induced by gamma radiation. The selective radioprotection of normal Pgp 170-negative cells by mitochondria-targeted antioxidants could be a promising strategy to increase the efficiency of radiotherapy for multidrug-resistant tumors.
Collapse
Affiliation(s)
- Elena K Fetisova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119991, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Silachev DN, Plotnikov EY, Pevzner IB, Zorova LD, Babenko VA, Zorov SD, Popkov VA, Jankauskas SS, Zinchenko VP, Sukhikh GT, Zorov DB. The Mitochondrion as a Key Regulator of Ischaemic Tolerance and Injury. Heart Lung Circ 2014; 23:897-904. [DOI: 10.1016/j.hlc.2014.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/16/2014] [Indexed: 01/03/2023]
|
25
|
Stelmashook EV, Genrikhs EE, Novikova SV, Barskov IV, Gudasheva TA, Seredenin SB, Khaspekov LG, Isaev NK. Behavioral effect of dipeptide NGF mimetic GK-2 in an in vivo model of rat traumatic brain injury and its neuroprotective and regenerative properties in vitro. Int J Neurosci 2014; 125:375-9. [PMID: 24950445 DOI: 10.3109/00207454.2014.935376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A protective behavioral effect of a nerve growth factor dipeptide mimetic GK-2 in the model of open focal trauma of rat brain sensorimotor cortex and its antioxidative and regenerative properties in cultures of rat cerebellar granule cells and mouse embryonal spinal ganglion, respectively, were studied. Intraperitoneal injections of GK-2 (1 mg/kg) for 5 days daily after traumatic brain injury improved significantly motor function of limbs. Moreover, supplementation the incubation medium with GK-2 (0.5-1.5 mg/l) decreased neuronal death induced by H2O2 in cerebellar granule cell cultures and stimulated neurite outgrowth from cultured mouse embryonal spinal ganglia. Our results suggest that GK-2 exhibits pronounced positive behavioral effect in vivo as well as neuroprotective and regenerative effects in vitro, and that these neuroprotective properties probably associated with cell survival but not with cell differentiation pathway.
Collapse
Affiliation(s)
- Elena V Stelmashook
- 1Research Center of Neurology, Russian Academy of Medical Sciences , Volokolamskoe Shosse 80, Moscow , Russia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Plotnikov EY, Silachev DN, Jankauskas SS, Rokitskaya TI, Chupyrkina AA, Pevzner IB, Zorova LD, Isaev NK, Antonenko YN, Skulachev VP, Zorov DB. Mild uncoupling of respiration and phosphorylation as a mechanism providing nephro- and neuroprotective effects of penetrating cations of the SkQ family. BIOCHEMISTRY (MOSCOW) 2014; 77:1029-37. [PMID: 23157263 DOI: 10.1134/s0006297912090106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It is generally accepted that mitochondrial production of reactive oxygen species is nonlinearly related to the value of the mitochondrial membrane potential with significant increment at values exceeding 150 mV. Due to this, high values of the membrane potential are highly dangerous, specifically under pathological conditions associated with oxidative stress. Mild uncoupling of oxidative phosphorylation is an approach to preventing hyperpolarization of the mitochondrial membrane. We confirmed data obtained earlier in our group that dodecylrhodamine 19 (C(12)R1) (a penetrating cation from SkQ family not possessing a plastoquinone group) has uncoupling properties, this fact making it highly potent for use in prevention of pathologies associated with oxidative stress induced by mitochondrial hyperpolarization. Further experiments showed that C(12)R1 provided nephroprotection under ischemia/reperfusion of the kidney as well as under rhabdomyolysis through diminishing of renal dysfunction manifested by elevated level of blood creatinine and urea. Similar nephroprotective properties were observed for low doses (275 nmol/kg) of the conventional uncoupler 2,4-dinitrophenol. Another penetrating cation that did not demonstrate protonophorous activity (SkQR4) had no effect on renal dysfunction. In experiments with induced ischemic stroke, C(12)R1 did not have any effect on the area of ischemic damage, but it significantly lowered neurological deficit. We conclude that beneficial effects of penetrating cation derivatives of rhodamine 19 in renal pathologies and brain ischemia may be at least partially explained by uncoupling of oxidation and phosphorylation.
Collapse
Affiliation(s)
- E Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Isaev NK, Novikova SV, Stelmashook EV, Barskov IV, Silachev DN, Khaspekov LG, Skulachev VP, Zorov DB. Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. BIOCHEMISTRY (MOSCOW) 2014; 77:996-9. [PMID: 23157258 DOI: 10.1134/s0006297912090052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A protective effect of a mitochondria-targeted antioxidant, a cationic rhodamine derivative linked to a plastoquinone molecule (10-(6'-plastoquinonyl)decylrhodamine-19, SkQR1) was studied in the model of open focal trauma of rat brain sensorimotor cortex. It was found that daily intraperitoneal injections of SkQR1 (100 nmol/kg) for 4 days after the trauma improved performance in a test characterizing neurological deficit and decreased the volume of the damaged cortical area. Our results suggest that SkQR1 exhibits profound neuroprotective effect, which may be explained by its antioxidative activity.
Collapse
Affiliation(s)
- N K Isaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zorov DB, Isaev NK, Plotnikov EY, Silachev DN, Zorova LD, Pevzner IB, Morosanova MA, Jankauskas SS, Zorov SD, Babenko VA. Perspectives of mitochondrial medicine. BIOCHEMISTRY (MOSCOW) 2014; 78:979-90. [PMID: 24228919 DOI: 10.1134/s0006297913090034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial medicine was established more than 50 years ago after discovery of the very first pathology caused by impaired mitochondria. Since then, more than 100 mitochondrial pathologies have been discovered. However, the number may be significantly higher if we interpret the term "mitochondrial medicine" more widely and include in these pathologies not only those determined by the genetic apparatus of the nucleus and mitochondria, but also acquired mitochondrial defects of non-genetic nature. Now the main problems of mitochondriology arise from methodology, this being due to studies of mitochondrial activities under different models and conditions that are far from the functioning of mitochondria in a cell, organ, or organism. Controversial behavior of mitochondria ("friends and foes") to some extent might be explained by their bacterial origin with possible preservation of "egoistic" features peculiar to bacteria. Apparently, for normal mitochondrial functioning it is essential to maintain homeostasis of a number of mitochondrial elements such as mitochondrial DNA structure, membrane potential, and the system of mitochondrial quality control. Abrogation of these elements can cause a number of pathologies that have become subjects of mitochondrial medicine. Some approaches to therapy of mitochondrial pathologies are discussed.
Collapse
Affiliation(s)
- D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Phenoptosis is the death of an organism programmed by its genome. Numerous examples of phenoptosis are described in prokaryotes, unicellular eukaryotes, and all kingdoms of multicellular eukaryotes (animals, plants, and fungi). There are very demonstrative cases of acute phenoptosis when actuation of a specific biochemical or behavioral program results in immediate death. Rapid (taking days) senescence of semelparous plants is described as phenoptosis controlled by already known genes and mediated by toxic phytohormones like abscisic acid. In soya, the death signal is transmitted from beans to leaves via xylem, inducing leaf fall and death of the plant. Mutations in two genes of Arabidopsis thaliana, required for the flowering and subsequent formation of seeds, prevent senescence, strongly prolonging the lifespan of this small semelparous grass that becomes a big bush with woody stem, and initiate substitution of vegetative for sexual reproduction. The death of pacific salmon immediately after spawning is surely programmed. In this case, numerous typical traits of aging, including amyloid plaques in the brain, appear on the time scale of days. There are some indications that slow aging of higher animals and humans is also programmed, being the final step of ontogenesis. It is assumed that stepwise decline of many physiological functions during such aging increases pressure of natural selection on organisms stimulating in this way biological evolution. As a working hypothesis, the biochemical mechanism of slow aging is proposed. It is assumed that mitochondria-generated reactive oxygen species (ROS) is a tool to stimulate apoptosis, an effect decreasing with age the cell number (cellularity) of organs and tissues. A group of SkQ-type substances composed of plastoquinone and a penetrating cation were synthesized to target an antioxidant into mitochondria and to prevent the age-linked rise of the mitochondrial ROS level. Such targeting is due to the fact that mitochondria are the only cellular organelles that are negatively charged compared to the cytosol. SkQs are shown to strongly decrease concentration of ROS in mitochondria, prolong lifespan of fungi, invertebrates, fish, and mammals, and retard appearance of numerous traits of aging. Clinical trials of SkQ1 (plastoquinonyl decyltriphenylphosphonium) have been successfully completed so that the Ministry of Health of the Russian Federation recommends drops of very dilute (0.25 µM) solution of this antioxidant as a medicine to treat the syndrome of dry eye, which was previously considered an incurable disease developing with age. These drops are already available in drugstores. Thus, SkQ1 is the first mitochondria-targeted drug employed in medical practice.
Collapse
Affiliation(s)
- V P Skulachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.
| |
Collapse
|
30
|
Rin Jean S, Tulumello DV, Wisnovsky SP, Lei EK, Pereira MP, Kelley SO. Molecular vehicles for mitochondrial chemical biology and drug delivery. ACS Chem Biol 2014; 9:323-33. [PMID: 24410267 DOI: 10.1021/cb400821p] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mitochondria within human cells play a major role in a variety of critical processes involved in cell survival and death. An understanding of mitochondrial involvement in various human diseases has generated an appreciable amount of interest in exploring this organelle as a potential drug target. As a result, a number of strategies to probe and combat mitochondria-associated diseases have emerged. Access to mitochondria-specific delivery vectors has allowed the study of biological processes within this intracellular compartment with a heightened level of specificity. In this review, we summarize the features of existing delivery vectors developed for targeting probes and therapeutics to this highly impermeable organelle. We also discuss the major applications of mitochondrial targeting of bioactive molecules, which include the detection and treatment of oxidative damage, combating bacterial infections, and the development of new therapeutic approaches for cancer. Future directions include the assessment of the therapeutic benefit achieved by mitochondrial targeting for treatment of disease in vivo. In addition, the availability of mitochondria-specific chemical probes will allow the elucidation of the details of biological processes that occur within this cellular compartment.
Collapse
Affiliation(s)
- Sae Rin Jean
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - David V. Tulumello
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Simon P. Wisnovsky
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Eric K. Lei
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Mark P. Pereira
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Chemistry, Faculty
of Arts and Science, ‡Department of Biochemistry,
Faculty of Medicine, §Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy,University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Lukashev AN, Skulachev MV, Ostapenko V, Savchenko AY, Pavshintsev V, Skulachev VP. Advances in Development of Rechargeable Mitochondrial Antioxidants. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:251-65. [DOI: 10.1016/b978-0-12-394625-6.00010-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Cationic antioxidants as a powerful tool against mitochondrial oxidative stress. Biochem Biophys Res Commun 2013; 441:275-9. [PMID: 24161394 DOI: 10.1016/j.bbrc.2013.10.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 01/08/2023]
Abstract
This review describes evidence that mitochondrial reactive oxygen species (mROS) are of great importance under many physiological and pathological conditions. The most demonstrative indications favoring this conclusion originate from recent discoveries of the in vivo effects of mitochondria-targeted antioxidants (MitoQ and SkQs). The latter compounds look promising in treating several incurable pathologies as well as aging.
Collapse
|
33
|
Kirpatovsky VI, Plotnikov EY, Mudraya IS, Golovanov SA, Drozhzheva VV, Khromov RA, Chernikov DY, Skulachev VP, Zorov DB. Role of oxidative stress and mitochondria in onset of urinary bladder dysfunction under acute urine retention. BIOCHEMISTRY (MOSCOW) 2013; 78:542-8. [PMID: 23848157 DOI: 10.1134/s0006297913050131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Acute urine retention is a frequent complication in patients with benign hyperplasia of the prostate gland. According to studies made on experimental animals and people, it is accompanied by the deterioration of the bladder blood supply. This study attempts to explore the relationship of intramural blood flow, production of reactive oxygen species, and functional state of the bladder detrusor in modeling of acute urine retention in rats, as well as the impact of mitochondria-targeted antioxidants (which are supposed to alleviate the effects of oxidative stress induced by experimental ischemia) on these parameters. The study showed beneficial effects of mitochondria-targeted antioxidant SkQR1 in preventing damage of the bladder caused by acute urinary retention, which suggests the therapeutic use of this type of compounds for the treatment of ischemic abnormalities of the urinary bladder.
Collapse
Affiliation(s)
- V I Kirpatovsky
- Research Institute of Urology, Russian Ministry of Health, 3-ya Parkovaya ul. 51, 105425 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. Proc Natl Acad Sci U S A 2013; 110:E3100-8. [PMID: 23898194 DOI: 10.1073/pnas.1307096110] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute pyelonephritis is a potentially life-threatening infection of the upper urinary tract. Inflammatory response and the accompanying oxidative stress can contribute to kidney tissue damage, resulting in infection-induced intoxication that can become fatal in the absence of antibiotic therapy. Here, we show that pyelonephritis was associated with oxidative stress and renal cell death. Oxidative stress observed in pyelonephritic kidney was accompanied by a reduced level of mitochondrial B-cell lymphoma 2 (Bcl-2). Importantly, renal cell death and animal mortality were both alleviated by mitochondria-targeted antioxidant 10(6'-plastoquinonyl) decylrhodamine 19 (SkQR1). These findings suggest that pyelonephritis can be treated by reducing mitochondrial reactive oxygen species and thus by protecting mitochondrial integrity and lowering kidney damage.
Collapse
|
35
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
36
|
Isaev NK, Stelmashook EV, Stelmashook NN, Sharonova IN, Skrebitsky VG. Brain aging and mitochondria-targeted plastoquinone antioxidants of SkQ-type. BIOCHEMISTRY (MOSCOW) 2013; 78:295-300. [DOI: 10.1134/s0006297913030127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk. PLoS One 2012; 7:e51553. [PMID: 23272118 PMCID: PMC3522699 DOI: 10.1371/journal.pone.0051553] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/01/2012] [Indexed: 01/03/2023] Open
Abstract
Background Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. Methodology/Principal Findings We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced phosphorylation of GSK-3β in neuronal cells. Conclusion The results indicate that renal preconditioning and SkQR1-induced brain protection may be mediated through the release of EPO from the kidney.
Collapse
|
38
|
Chernyak BV, Antonenko YN, Galimov ER, Domnina LV, Dugina VB, Zvyagilskaya RA, Ivanova OY, Izyumov DS, Lyamzaev KG, Pustovidko AV, Rokitskaya TI, Rogov AG, Severina II, Simonyan RA, Skulachev MV, Tashlitsky VN, Titova EV, Trendeleva TA, Shagieva GS. Novel mitochondria-targeted compounds composed of natural constituents: Conjugates of plant alkaloids berberine and palmatine with plastoquinone. BIOCHEMISTRY (MOSCOW) 2012; 77:983-95. [DOI: 10.1134/s0006297912090040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Zorov DB, Plotnikov EY, Jankauskas SS, Isaev NK, Silachev DN, Zorova LD, Pevzner IB, Pulkova NV, Zorov SD, Morosanova MA. The phenoptosis problem: What is causing the death of an organism? Lessons from acute kidney injury. BIOCHEMISTRY (MOSCOW) 2012; 77:742-53. [DOI: 10.1134/s0006297912070073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Effect of liposomes on energy-dependent uptake of the antioxidant SkQR1 by isolated mitochondria. J Bioenerg Biomembr 2012; 44:453-60. [DOI: 10.1007/s10863-012-9449-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/21/2012] [Indexed: 12/24/2022]
|
41
|
Kapay NA, Isaev NK, Stelmashook EV, Popova OV, Zorov DB, Skrebitsky VG, Skulachev VP. In vivo injected mitochondria-targeted plastoquinone antioxidant SkQR1 prevents β-amyloid-induced decay of long-term potentiation in rat hippocampal slices. BIOCHEMISTRY (MOSCOW) 2011; 76:1367-70. [DOI: 10.1134/s0006297911120108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Novel Mitochondria-Targeted Antioxidants: Plastoquinone Conjugated with Cationic Plant Alkaloids Berberine and Palmatine. Pharm Res 2011; 28:2883-95. [DOI: 10.1007/s11095-011-0504-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
43
|
Antonenko YN, Avetisyan AV, Cherepanov DA, Knorre DA, Korshunova GA, Markova OV, Ojovan SM, Perevoshchikova IV, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Smirnova EA, Sobko AA, Sumbatyan NV, Severin FF, Skulachev VP. Derivatives of rhodamine 19 as mild mitochondria-targeted cationic uncouplers. J Biol Chem 2011; 286:17831-40. [PMID: 21454507 DOI: 10.1074/jbc.m110.212837] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.
Collapse
Affiliation(s)
- Yuri N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory 1, Moscow 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Plotnikov EY, Chupyrkina AA, Jankauskas SS, Pevzner IB, Silachev DN, Skulachev VP, Zorov DB. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim Biophys Acta Mol Basis Dis 2010; 1812:77-86. [PMID: 20884348 DOI: 10.1016/j.bbadis.2010.09.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/07/2010] [Accepted: 09/20/2010] [Indexed: 01/04/2023]
Abstract
Oxidative stress-related renal pathologies apparently include rhabdomyolysis and ischemia/reperfusion phenomenon. These two pathologies were chosen for study in order to develop a proper strategy for protection of the kidney. Mitochondria were found to be a key player in these pathologies, being both the source and the target for excessive production of reactive oxygen species (ROS). A mitochondria-targeted compound which is a conjugate of a positively charged rhodamine molecule with plastoquinone (SkQR1) was found to rescue the kidney from the deleterious effect of both pathologies. Intraperitoneal injection of SkQR1 before the onset of pathology not only normalized the level of ROS and lipid peroxidized products in kidney mitochondria but also decreased the level of cytochrome c in the blood, restored normal renal excretory function and significantly lowered mortality among animals having a single kidney exposed to ischemia/reperfusion. The SkQR1-derivative missing plastoquinone (C12R1) possessed some, although limited nephroprotective properties and enhanced animal survival after ischemia/reperfusion. SkQR1 was found to induce some elements of nephroprotective pathways providing ischemic tolerance such as an increase in erythropoietin levels and phosphorylation of glycogen synthase kinase 3β in the kidney. SkQR1 also normalized renal erythropoietin level lowered after kidney ischemia/reperfusion and injection of a well-known nephrotoxic agent gentamicin.
Collapse
Affiliation(s)
- E Y Plotnikov
- Laboratory of Mitochondrial Structure and Functions, AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991 Russia
| | | | | | | | | | | | | |
Collapse
|