1
|
Bu Z, Zhou Y, Xu F, Xu S. Single-Cell RNA and Transcriptome Sequencing to Analyze the Role of Lactate Metabolism in Traumatic Brain Injury Astrocytes. Brain Behav 2025; 15:e70428. [PMID: 40395067 DOI: 10.1002/brb3.70428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 03/02/2025] [Indexed: 05/22/2025] Open
Abstract
PURPOSE After traumatic brain injury (TBI), ischemia and hypoxia of brain tissue, glucose undergoes anaerobic fermentation, leading to a large accumulation of lactic acid. Our aim was to explore the role of lactate metabolism in brain cells after TBI. METHOD In scRNA-seq dataset, 10-week-old male C57BL/6 J mice were randomized to undergo mild fluid percussion injury or sham surgery, and we analyzed frontal cortex tissue during the acute (24 h) and subacute (7 days) phases of TBI at single-cell resolution. Cell cycle phases were evaluated, and principal component analysis was performed. Cell populations were identified and visualized using the UMAP downscaling technique. Differentially expressed genes (DEGs) were analyzed using the "FindAllMarkers" algorithm. In addition, the set of genes related to lactate metabolism was evaluated using the AUCell score. GO and KEGG enrichment analyses were performed to investigate the functional pathways of DEGs in astrocytes in the acute and subacute phases of TBI. RESULTS A total of 13 cell populations were distinguished, including neurons, astrocytes, and oligodendrocyte progenitors. The number of neurons, astrocytes, and endothelial cells was reduced in the TBI group compared with the sham group. During the acute phase of TBI, enhanced interactions between brain-associated cells, especially astrocytes and oligodendrocyte precursor cells, were observed. Several signaling pathways, including EGF, CSF, MIF inflammatory factors as well as PSAP and PTN neurotrophic factor signaling were significantly enhanced after TBI. Lactate metabolism scores were elevated in the TBI group, especially in astrocytes. During the subacute phase, the frequency of intercellular communication increased but its intensity decreased. Astrocytes and oligodendrocyte precursor cells remained at high levels during both phases. PSAP signaling was closely associated with the subacute phase of TBI. Subsequently, NADH:ubiquinone oxidoreductase subunit B9 (Ndufb9) and cytochrome c oxidase subunit 8A (Cox8a) were identified as key players in lactate metabolism associated with TBI. Ndufb9 and Cox8a showed a consistent upward trend in brain tissue following TBI with transcriptomic data. CONCLUSION Lactate metabolism genes play an important role in TBI. These findings provide new insights into the cellular and molecular mechanisms following TBI.
Collapse
Affiliation(s)
- Zhang Bu
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuqian Zhou
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shan Xu
- Soochow University Campus Hospital, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
de Jager C, Soliman E, Theus MH. Interrogating mediators of single-cell transcriptional changes in the acute damaged cerebral cortex: Insights into endothelial-astrocyte interactions. Mol Cell Neurosci 2025; 133:104003. [PMID: 40090391 DOI: 10.1016/j.mcn.2025.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025] Open
Abstract
Traumatic brain injury (TBI) induces complex cellular and molecular changes, challenging recovery and therapeutic development. Although molecular pathways have been implicated in TBI pathology, the cellular specificity of these mechanisms remains underexplored. Here, we investigate the role of endothelial cell (EC) EphA4, a receptor tyrosine kinase receptor involved in axonal guidance, in modulating cell-specific transcriptomic changes within the damaged cerebral cortex. Utilizing single-cell RNA sequencing (scRNA-seq) in an experimental TBI model, we mapped transcriptional changes across various cell types, with a focus on astrocytes and ECs. Our analysis reveals that EC-specific knockout (KO) of EphA4 triggers significant alterations in astrocyte gene expression and shifts predominate subclusters. We identified six distinct astrocyte clusters (C0-C5) in the damaged cortex including as C0-Mobp/Plp1+; C1-Slc1a3/Clu+; C2-Hbb-bs/Hba-a1/Ndrg2+; C3-GFAP/Lcn2+; C4-Gli3/Mertk+, and C5-Cox8a+. We validate a new Sox9+ cluster expressing Mertk and Gas, which mediates efferocytosis to facilitate apoptotic cell clearance and anti-inflammatory responses. Transcriptomic and CellChat analyses of EC-KO cells highlights upregulation of neuroprotective pathways, including increased amyloid precursor protein (APP) and Gas6. Key pathways predicted to be modulated in astrocytes from EC-KO mice include oxidative phosphorylation and FOXO signaling, mitochondrial dysfunction and ephrin B signaling. Concurrently, metabolic and signaling pathways in endothelial cells-such as ceramide and sphingosine phosphate metabolism and NGF-stimulated transcription-indicate an adaptive response to a metabolically demanding post-injury hypoxic environment. These findings elucidate potential interplay between astrocytic and endothelial responses as well as transcriptional networks underlying cortical tissue damage.
Collapse
Affiliation(s)
- Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Blacksburg, VA 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Blacksburg, VA 24061, USA; Center for Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
3
|
Jin C, Yan K, Wang M, Song W, Wang B, Men Y, Niu J, He Y, Zhang Q, Qi J. Dissecting the dynamic cellular transcriptional atlas of adult teleost testis development throughout the annual reproductive cycle. Development 2024; 151:dev202296. [PMID: 38477640 DOI: 10.1242/dev.202296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.
Collapse
Affiliation(s)
- Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Yu Men
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| |
Collapse
|