1
|
Fopp-Bayat D, Kuciński M. An efficient protocol for chromosome isolation from sterlet (A. ruthenus) embryos and larvae. Anim Reprod Sci 2022; 238:106953. [DOI: 10.1016/j.anireprosci.2022.106953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
|
2
|
Gilannejad N, Paykan Heyrati F, Dorafshan S, Martos-Sitcha JA, Yúfera M, Martínez-Rodríguez G. Molecular basis of the digestive functionality in developing Persian sturgeon (Acipenser persicus) larvae: additional clues for its phylogenetic status. J Comp Physiol B 2019; 189:367-383. [DOI: 10.1007/s00360-019-01215-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 03/10/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
|
3
|
Fatira E, Havelka M, Labbé C, Depincé A, Iegorova V, Pšenička M, Saito T. Application of interspecific Somatic Cell Nuclear Transfer (iSCNT) in sturgeons and an unexpectedly produced gynogenetic sterlet with homozygous quadruple haploid. Sci Rep 2018; 8:5997. [PMID: 29662093 PMCID: PMC5902484 DOI: 10.1038/s41598-018-24376-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a very promising cloning technique for reconstruction of endangered animals. The aim of the present research is to implement the interspecific SCNT (iSCNT) technique to sturgeon; one fish family bearing some of the most critically endangered species. We transplanted single cells enzymatically isolated from a dissociated fin-fragment of the Russian sturgeon (Acipenser gueldenstaedtii) into non-enucleated eggs of the sterlet (Acipenser ruthenus), two species bearing different ploidy (4n and 2n, respectively). Up to 6.7% of the transplanted eggs underwent early development, and one feeding larva (0.5%) was successfully produced. Interestingly, although this transplant displayed tetraploidism (4n) as the donor species, the microsatellite and species-specific analysis showed recipient-exclusive homozygosis without any donor markers. Namely, with regards to this viable larva, host genome duplication occurred twice to form tetraploidism during its early development, probably due to iSCNT manipulation. The importance of this first attempt is to apply iSCNT in sturgeon species, establishing the crucial first steps by adjusting the cloning-methodology in sturgeon's biology. Future improvements in sturgeon's cloning are necessary for providing with great hope in sturgeon's reproduction.
Collapse
Affiliation(s)
- Effrosyni Fatira
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Miloš Havelka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido, 041-8611, Japan
| | - Catherine Labbé
- INRA, Fish Physiology and Genomics department, Campus de Beaulieu, F-35000, Rennes, France
| | - Alexandra Depincé
- INRA, Fish Physiology and Genomics department, Campus de Beaulieu, F-35000, Rennes, France
| | - Viktoriia Iegorova
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Martin Pšenička
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Taiju Saito
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Ehime, 798-4206, Japan
| |
Collapse
|
4
|
Peng G, Zhao W, Shi Z, Chen H, Liu Y, Wei J, Gao F. Cloning HSP70 and HSP90 genes of kaluga (Huso dauricus) and the effects of temperature and salinity stress on their gene expression. Cell Stress Chaperones 2016; 21:349-59. [PMID: 26683614 PMCID: PMC4786522 DOI: 10.1007/s12192-015-0665-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022] Open
Abstract
The genes encoding HSP70 and HSP90 proteins were isolated from kaluga by homologous cloning and rapid amplification of complementary DNA (cDNA) ends (RACE). HSP70 (GenBank accession no. KP050541) and HSP90 (GenBank accession no. KP050542) cDNAs were composed of 2275 and 2718 bp and encoded polypeptides of 650 and 725 amino acids, respectively. Basic Local Alignment Search Tool (BLAST) analysis showed that HSP70 and HSP90 of kaluga shared high identities with those of Acipenser ruthenus, Acipenser schrenckii, and Acipenser baerii (98-99 %). Fluorescent real-time RT-PCR under unstressed conditions revealed that HSP70 and HSP90 were expressed in 11 different tissues of kaluga. Messenger RNA (mRNA) expressions of both HSP70 and HSP90 were highest in the intestine and lowest in the muscle. In addition, the patterns of mRNA expression of HSP70 and HSP90 were similar, although the level of expression was more in HSP90 than in HSP70 (P < 0.05).We also analyzed patterns of HSP70 and HSP90 expression in the muscle, gill, and liver of kaluga under different combinations of temperature and salinity stress, including temperatures of 4,10, 25, and 28 °C at 0 ppt salinity, and salinities of 10, 20, 30, and 40 ppt at 16 °C, where 16 °C at 0 ppt (parts per thousand) served as the control. We found that levels of mRNA expression of both HSP70 and HSP90 were highest at 4 °C in the muscle, gill, and liver and changed little with salinity stress. These results increase understanding of the mechanisms of stress response of cold freshwater fish.
Collapse
Affiliation(s)
- Guogan Peng
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Wen Zhao
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China.
| | - Zhenguang Shi
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Huirong Chen
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Jie Wei
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| | - Fengying Gao
- College of Fisheries and Life Science, Dalian Ocean University, No.52 Heishijiao Street, Shahekou district, Dalian, 116023, Liaoning, People's Republic of China
| |
Collapse
|
5
|
Shedko SV, Miroshnichenko IL, Nemkova GA, Shedko MB. On the population genetic portrait of kaluga, Acipenser dauricus georgi, 1775: Analysis of sequence variation in the mitochondrial dna control region. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415080098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Rajkov J, Shao Z, Berrebi P. Evolution of Polyploidy and Functional Diploidization in Sturgeons: Microsatellite Analysis in 10 Sturgeon Species. J Hered 2014; 105:521-531. [DOI: 10.1093/jhered/esu027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/21/2014] [Indexed: 11/13/2022] Open
|
7
|
Linhartova Z, Rodina M, Nebesarova J, Cosson J, Psenicka M. Morphology and ultrastructure of beluga (Huso huso) spermatozoa and a comparison with related sturgeons. Anim Reprod Sci 2013; 137:220-9. [DOI: 10.1016/j.anireprosci.2013.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/04/2013] [Accepted: 01/06/2013] [Indexed: 02/08/2023]
|
8
|
Havelka M, Kašpar V, Hulák M, Flajšhans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. FOLIA ZOOLOGICA 2011. [DOI: 10.25225/fozo.v60.i2.a3.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Miloš Havelka
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Vojtěch Kašpar
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Martin Hulák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Martin Flajšhans
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses and Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|