1
|
Cullen A, Pearson LA, Ongley SE, Smith ND, Neilan BA. Transcriptional regulation of the cylindrospermopsin biosynthesis (cyr) gene cluster in Raphidiopsis raciborskii AWT205. HARMFUL ALGAE 2025; 142:102783. [PMID: 39947847 DOI: 10.1016/j.hal.2024.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 05/09/2025]
Abstract
Cyanobacterial harmful algal blooms (HABs), producing the hepatotoxin cylindrospermopsin (CYN), are among the most frequently reported globally. Although the gene cluster encoding CYN biosynthesis (cyr) has been sequenced, many aspects of CYN regulation are unresolved. This study investigates cyr transcriptional regulation in the cyanobacterium, Raphidiopsis raciborskii AWT205, through in silico analysis, reverse transcription quantitative PCR (RT-qPCR), and DNA-affinity capture assays (DACAs). While in silico analysis identified binding sites for environmentally responsive transcription factors throughout the cyr cluster, DACAs captured the binding of AbrB (a transcription factor that regulates the cyanobacterial response to nitrogen and iron availability) to the cyrD promoter. Surprisingly, the initiating cylindrospermopsin synthetase, CyrA, was also captured by the cyrD promoter probe. This is the first experimental evidence of CYN (and cyanotoxin) autoregulation. Our study is also the most extensive investigation of cyr transcription, concurrently targeting nine cyr genes across three growth stages. We found significant heterogeneity between transcription levels of each cyr gene, which also varied across different growth stages. Surprisingly, the ratio of cyrI (hydroxylase) to cyrJ (sulfotransferase) transcripts was inversely proportional to the ratio of deoxyCYN to CYN. Taken together, the results of this study suggest that transcription of the cyr gene cluster in R. raciborskii AWT205 is driven by multiple promoters and DNA-binding proteins, that can be responsive to changing environmental conditions. However, the production of different CYN variants did not correlate to transcription alone, with additional regulatory mechanisms proposed.
Collapse
Affiliation(s)
- Alescia Cullen
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; ARC Centre of Excellence in Synthetic Biology, North Ryde, NSW 2113, Australia
| | - Leanne A Pearson
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; ARC Centre of Excellence in Synthetic Biology, North Ryde, NSW 2113, Australia
| | - Sarah E Ongley
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility (ABRF), Research Services, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; ARC Centre of Excellence in Synthetic Biology, North Ryde, NSW 2113, Australia.
| |
Collapse
|
2
|
Waggoner EM, Djaoudi K, Diaz JM, Duhamel S. Dissolved organic phosphorus bond-class utilization by Synechococcus. FEMS Microbiol Ecol 2024; 100:fiae099. [PMID: 39003239 PMCID: PMC11319936 DOI: 10.1093/femsec/fiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024] Open
Abstract
Dissolved organic phosphorus (DOP) contains compounds with phosphoester, phosphoanhydride, and phosphorus-carbon bonds. While DOP holds significant nutritional value for marine microorganisms, the bioavailability of each bond-class to the widespread cyanobacterium Synechococcus remains largely unknown. This study evaluates bond-class specific DOP utilization by Synechococcus strains from open and coastal oceans. Both strains exhibited comparable growth rates when provided phosphate, a phosphoanhydride [3-polyphosphate and 45-polyphosphate], or a DOP compound with both phosphoanhydride and phosphoester bonds (adenosine 5'-triphosphate). Growth rates on phosphoesters [glucose-6-phosphate, adenosine 5'-monophosphate, bis(4-methylumbelliferyl) phosphate] were variable, and neither strain grew on selected phosphorus-carbon compounds. Both strains hydrolyzed 3-polyphosphate, then adenosine 5'-triphosphate, and lastly adenosine 5'-monophosphate, exhibiting preferential enzymatic hydrolysis of phosphoanhydride bonds. The strains' exoproteomes contained phosphorus hydrolases, which combined with enhanced cell-free hydrolysis of 3-polyphosphate and adenosine 5'-triphosphate under phosphate deficiency, suggests active mineralization of phosphoanhydride bonds by these exoproteins. Synechococcus alkaline phosphatases presented broad substrate specificities, including activity toward the phosphoanhydride 3-polyphosphate, with varying affinities between strains. Collectively, these findings underscore the potentially significant role of compounds with phosphoanhydride bonds in Synechococcus phosphorus nutrition and highlight varied growth and enzymatic responses to molecular diversity within DOP bond-classes, thereby expanding our understanding of microbially mediated DOP cycling in marine ecosystems.
Collapse
Affiliation(s)
- Emily M Waggoner
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Kahina Djaoudi
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| | - Julia M Diaz
- Geosciences Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, United States
| | - Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, 1007 East Lowell Street, Tucson, Arizona, AZ 85721, United States
| |
Collapse
|
3
|
Spencer-Williams I, Balangoda A, Dabundo R, Elliott E, Haig SJ. Exploring the Impacts of Full-Scale Distribution System Orthophosphate Corrosion Control Implementation on the Microbial Ecology of Hydrologically Connected Urban Streams. Microbiol Spectr 2022; 10:e0215822. [PMID: 36321898 PMCID: PMC9769763 DOI: 10.1128/spectrum.02158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
Many cities across the nation are plagued by lead contamination in drinking water. As such, many drinking water utilities have undertaken lead service line (LSL) replacement to prevent further lead contamination. However, given the urgency of lead mitigation, and the socioeconomic challenges associated with LSL replacement, cities have used phosphate-based corrosion inhibitors (i.e., orthophosphate) alongside LSL replacement. While necessary to ensure public health protection from lead contamination, the addition of orthophosphate into an aging and leaking drinking water system may increase the concentration of phosphate leaching into urban streams characterized by century-old failing water infrastructure. Such increases in phosphate availability may cascade into nutrient and microbial community composition shifts. The purpose of this study was to determine how this occurs and to understand whether full-scale distribution system orthophosphate addition impacts the microbial ecology of urban streams. Through monthly collection of water samples from five urban streams before and after orthophosphate addition, significant changes in microbial community composition (16S rRNA amplicon sequencing) and in the relative abundance of typical freshwater taxa were observed. In addition, key microbial phosphorus and nitrogen metabolism genes (e.g., two component regulatory systems) were predicted to change via BugBase. No significant differences in the absolute abundances of total bacteria, Cyanobacteria, and "Candidatus Accumulibacter" were observed. Overall, the findings from this study provide further evidence that urban streams are compromised by unintentional hydrologic connections with drinking water infrastructure. Moreover, our results suggest that infiltration of phosphate-based corrosion inhibitors can impact urban streams and have important, as-yet-overlooked impacts on urban stream microbial communities. IMPORTANCE Elevated lead levels in drinking water supplies are a public health risk. As such, it is imperative for cities to urgently address lead contamination from aging drinking water supplies by way of lead service line replacements and corrosion control methods. However, when applying corrosion control methods, it is also important to consider the chemical and microbiological effects that can occur in natural settings, given that our water infrastructure is aging and more prone to leaks and breaks. Here, we examine the impacts on the microbial ecology of five urban stream systems before and after full-scale distribution system orthophosphate addition. Overall, the results suggest that infiltration of corrosion inhibitors may impact microbial communities; however, future work should be done to ascertain the true impact to protect both public and environmental health.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anusha Balangoda
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Richard Dabundo
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily Elliott
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Zhang Y, Wang Y, Wei W, Wang M, Jia S, Yang M, Ge F. Proteomic analysis of the regulatory networks of ClpX in a model cyanobacterium Synechocystis sp. PCC 6803. FRONTIERS IN PLANT SCIENCE 2022; 13:994056. [PMID: 36247581 PMCID: PMC9560874 DOI: 10.3389/fpls.2022.994056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Protein homeostasis is tightly regulated by protein quality control systems such as chaperones and proteases. In cyanobacteria, the ClpXP proteolytic complex is regarded as a representative proteolytic system and consists of a hexameric ATPase ClpX and a tetradecameric peptidase ClpP. However, the functions and molecular mechanisms of ClpX in cyanobacteria remain unclear. This study aimed to decipher the unique contributions and regulatory networks of ClpX in the model cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis). We showed that the interruption of clpX led to slower growth, decreased high light tolerance, and impaired photosynthetic cyclic electron transfer. A quantitative proteomic strategy was employed to globally identify ClpX-regulated proteins in Synechocystis cells. In total, we identified 172 differentially expressed proteins (DEPs) upon the interruption of clpX. Functional analysis revealed that these DEPs are involved in diverse biological processes, including glycolysis, nitrogen assimilation, photosynthetic electron transport, ATP-binding cassette (ABC) transporters, and two-component signal transduction. The expression of 24 DEPs was confirmed by parallel reaction monitoring (PRM) analysis. In particular, many hypothetical or unknown proteins were found to be regulated by ClpX, providing new candidates for future functional studies on ClpX. Together, our study provides a comprehensive ClpX-regulated protein network, and the results serve as an important resource for understanding protein quality control systems in cyanobacteria.
Collapse
Affiliation(s)
- Yumeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaqi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shuzhao Jia
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Shi W, Xing Y, Zhu Y, Gao N, Ying Y. Diverse responses of pqqC- and phoD-harbouring bacterial communities to variation in soil properties of Moso bamboo forests. Microb Biotechnol 2022; 15:2097-2111. [PMID: 35298867 PMCID: PMC9249317 DOI: 10.1111/1751-7915.14029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphate‐mobilizing bacteria (PMB) play a critical role in the regulation of phosphorus availability in the soil. The microbial genes pqqC and phoD encode pyrroloquinoline quinone synthase and bacterial alkaline phosphatase, respectively, which regulate inorganic and organic phosphorus mobilization, and are therefore used as PMB markers. We examined the effects of soil properties in three Moso bamboo forest sites on the PMB communities that were profiled using high‐throughput sequencing. We observed differentiated responses of pqqC‐ and phoD‐harbouring PMB communities to various soil conditions. There was significant variation among the sites in the diversity and structure of the phoD‐harbouring community, which correlated with variation in phosphorus levels and non‐capillary porosity; soil organic carbon and soil water content also affected the structure of the phoD‐harbouring community. However, no significant difference in the diversity of pqqC‐harbouring community was observed among different sites, while the structure of the pqqC‐harbouring bacteria community was affected by soil organic carbon and soil total nitrogen, but not soil phosphorus levels. Overall, changes in soil conditions affected the phoD‐harbouring community more than the pqqC‐harbouring community. These findings provide a new insight to explore the effects of soil conditions on microbial communities that solubilize inorganic phosphate and mineralize organic phosphate.
Collapse
Affiliation(s)
- Wenhui Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yijing Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ying Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yeqing Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
6
|
Chanu NK, Mandal MK, Srivastava A, Chaurasia N. Proteomics analysis reveals several metabolic alterations in cyanobacterium Anabaena sp. NC-K1 in response to alpha-cypermethrin exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19762-19777. [PMID: 34718975 DOI: 10.1007/s11356-021-16611-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
In the current study, the effect of the EC50 and LC90 concentrations of pyrethroid insecticide alpha-cypermethrin to cyanobacteria Anabaena sp. NC-K1 was investigated at different time exposures (1st day, 4th day and 7th day) with reference to growth, photosynthetic pigments, oxidative damage and antioxidant defence system. Superoxide dismutase (1.38-fold), peroxidase (5.04) and proline content (2.27-fold) were enhanced compared to the control. After performing 2D gel electrophoresis at 1st day EC50 exposure, where appropriate differences in the biochemical and physiological parameters were observed, 22 differentially accumulated proteins (20 upregulated and 2 downregulated) were selected for mass spectrometry. Out of 42 proteins identified, 20 upregulated protein spots were classified into twelve categories according to their metabolic functions. Proteins related to photosynthesis (phycobilisome rod-core linker polypeptide, rubisco), stress responses (Hsp70, Hsp40, catalase family peroxidase), translation (elongation factor Tu) and amino acid biosynthesis and metabolism (3-phosphoshikimate 1-carboxyvinyl transferase) were significantly upregulated. Additionally, proteins involved in transcription and DNA repair (Snf-2 histone linker phd ring helicase, RNA polymerase sigma factor RpoD and Holliday junction ATP-dependent DNA helicase RuvA) were considerably upregulated. Upregulation of these proteins against pesticide stress presumably maintained the photosynthesis, energy metabolism, carbohydrate metabolism, transport and signalling proteins, transcription, translation and DNA repair. Additionally, these proteins might involve in sufficient detoxification of ROS and play a crucial role in damage removal and repair of oxidized proteins, lipids and nucleic acids. Taken together, Anabaena sp. NC-K1 responded towards alpha-cypermethrin stress via modulating its proteome to maintain its cellular metabolism and homeostasis.
Collapse
Affiliation(s)
- Ng Kunjarani Chanu
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Madan Kumar Mandal
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Chaurasia
- Environmental Biotechnology Laboratory, Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
7
|
Shi JQ, Ou-Yang T, Yang SQ, Zhao L, Ji LL, Wu ZX. Transcriptomic responses to phosphorus in an invasive cyanobacterium, Raphidiopsis raciborskii: Implications for nutrient management. HARMFUL ALGAE 2022; 111:102150. [PMID: 35016763 DOI: 10.1016/j.hal.2021.102150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is a vital macronutrient associated with the growth and proliferation of Raphidiopsis raciborskii, an invasive and notorious bloom-forming cyanobacterium. However, the molecular mechanisms involved in P acclimation remain largely unexplored for Raphidiopsis raciborskii. Here, transcriptome sequencing of Raphidiopsis raciborskii was conducted to reveal multifaceted mechanisms involved in mimicking dipotassium phosphate (DIP), β-glycerol phosphate (Gly), 2-aminoethylphosphonic acid (AEP), and P-free conditions (NP). Chlorophyll a fluorescence parameters showed significant differences in the NP and AEP groups compared with the DIP and Gly-groups. Expression levels of genes related to phosphate transportation and uptake, organic P utilization, nitrogen metabolism, urea cycling, carbon fixation, amino acid metabolism, environmental information, the ATP-synthesis process in glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway were remarkably upregulated, while those related to photosynthesis, phycobiliproteins, respiration, oxidative phosphorylation, sulfur metabolism, and genetic information were markedly downregulated in the NP group relative to the DIP group. However, the expression of genes involved in organic P utilization, the urea cycle, and genetic information in the Gly-group, and carbon-phosphorus lyase, genetic information and environmental information in the AEP group were significantly increased compared to the DIP group. Together, these results indicate that Raphidiopsis raciborskii exhibits the evolution of coordination of multiple metabolic pathways and certain key genes to adapt to ambient P changes, which implies that if P is reduced to control Raphidiopsis raciborskii bloom, there is a risk that external nutrients (such as nitrogen, amino acids, and urea) will stimulate the growth or metabolism of Raphidiopsis.
Collapse
Affiliation(s)
- Jun-Qiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Tian Ou-Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Song-Qi Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Lu-Lu Ji
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China
| | - Zhong-Xing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
8
|
Wei N, Song L, Gan N. Quantitative Proteomic and Microcystin Production Response of Microcystis aeruginosa to Phosphorus Depletion. Microorganisms 2021; 9:microorganisms9061183. [PMID: 34072711 PMCID: PMC8227402 DOI: 10.3390/microorganisms9061183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Microcystis blooms are the most widely distributed and frequently occurring cyanobacterial blooms in freshwater. Reducing phosphorus is suggested to be effective in mitigating cyanobacterial blooms, while the underlying molecular mechanisms are yet to be elucidated. In the present study, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics was employed to study the effects of phosphorus depletion on Microcystis aeruginosa FACHB-905. The production of microcystins (MCs), a severe hazard of Microcystis blooms, was also analyzed. In total, 230 proteins were found to be differentially abundant, with 136 downregulated proteins. The results revealed that, upon phosphorus limitation stress, Microcystis aeruginosa FACHB-905 raised the availability of phosphorus primarily by upregulating the expression of orthophosphate transport system proteins, with no alkaline phosphatase producing ability. Phosphorus depletion remarkably inhibited cell growth and the primary metabolic processes of Microcystis, including transcription, translation and photosynthesis, with structures of photosystems remaining intact. Moreover, expression of nitrogen assimilation proteins was downregulated, while proteins involved in carbon catabolism were significantly upregulated, which was considered beneficial for the intracellular balance among carbon, nitrogen and phosphorus. The expression of MC synthetase was not significantly different upon phosphorus depletion, while MC content was significantly suppressed. It is assumed that phosphorus depletion indirectly regulates the production of MC by the inhibition of metabolic processes and energy production. These results contribute to further understanding of the influence mechanisms of phosphorus depletion on both biological processes and MC production in Microcystis cells.
Collapse
Affiliation(s)
- Nian Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430072, China
| | - Lirong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Correspondence: (L.S.); (N.G.)
| | - Nanqin Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Correspondence: (L.S.); (N.G.)
| |
Collapse
|
9
|
Zhang Q, Chen Y, Wang M, Zhang J, Chen Q, Liu D. Molecular responses to inorganic and organic phosphorus sources in the growth and toxin formation of Microcystis aeruginosa. WATER RESEARCH 2021; 196:117048. [PMID: 33773451 DOI: 10.1016/j.watres.2021.117048] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Toxic cyanobacteria bloom is a ubiquitous phenomenon worldwide in eutrophic lakes or reservoirs. Microcystis, is a cosmopolitan genus in cyanobacteria and exists in many different forms. Microcystis aeruginosa (M. aeruginosa) can produce microcystins (MCs) with strong liver toxicity during its growth and decomposition. Phosphorus (P) is a typical growth limiting factor of M. aeruginosa. Though different forms and concentrations of P are common in natural water, the molecular responses in the growth and MCs formation of M. aeruginosa remain unclear. In this study, laboratory experiments were conducted to determine the uptake of P, cell activity, MCs release, and related gene expression under different concentrations of dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP). We found that the growth of M. aeruginosa was promoted by increasing DIP concentration but coerced under high concentration (0.6 and 1.0 mg P/L) of DOP after P starvation. The growth stress was not related to the alkaline phosphatase activity (APA). Although alkaline phosphatase (AP) could convert DOP into algae absorbable DIP, the growth status of M. aeruginosa mainly depended on the response mechanism of phosphate transporter expression to the extracellular P concentration. High-concentration DIP promoted MCs production in M. aeruginosa, while high-concentration DOP triggered the release of intracellular MCs rather than affecting MCs production. Our study revealed the molecular responses of algal growth and toxin formation under different P sources, and provided a theoretical basis and novel idea for risk management of eutrophic lakes and reservoirs.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yuchen Chen
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Min Wang
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210098, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; Yangtze Institute for Conservation and Green Development, Nanjing 210098, China.
| | - Dongsheng Liu
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| |
Collapse
|
10
|
Buetti-Dinh A, Ruinelli M, Czerski D, Scapozza C, Martignier A, Roman S, Caminada A, Tonolla M. Geochemical and metagenomics study of a metal-rich, green-turquoise-coloured stream in the southern Swiss Alps. PLoS One 2021; 16:e0248877. [PMID: 33784327 PMCID: PMC8009434 DOI: 10.1371/journal.pone.0248877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/07/2021] [Indexed: 12/02/2022] Open
Abstract
The Swiss Alpine environments are poorly described from a microbiological perspective. Near the Greina plateau in the Camadra valley in Ticino (southern Swiss Alps), a green-turquoise-coloured water spring streams off the mountain cliffs. Geochemical profiling revealed naturally elevated concentrations of heavy metals such as copper, lithium, zinc and cadmium, which are highly unusual for the geomorphology of the region. Of particular interest, was the presence of a thick biofilm, that was revealed by microscopic analysis to be mainly composed of Cyanobacteria. A metagenome was further assembled to detail the genes found in this environment. A multitude of genes for resistance/tolerance to high heavy metal concentrations were indeed found, such as, various transport systems, and genes involved in the synthesis of extracellular polymeric substances (EPS). EPS have been evoked as a central component in photosynthetic environments rich in heavy metals, for their ability to drive the sequestration of toxic, positively-charged metal ions under high regimes of cyanobacteria-driven photosynthesis. The results of this study provide a geochemical and microbiological description of this unusual environment in the southern Swiss Alps, the role of cyanobacterial photosynthesis in metal resistance, and the potential role of such microbial community in bioremediation of metal-contaminated environments.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (ABD); (MT)
| | - Michela Ruinelli
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Dorota Czerski
- Institute of Earth Sciences, University of Applied Sciences of Southern Switzerland (SUPSI), Trevano, Canobbio, Switzerland
| | - Cristian Scapozza
- Institute of Earth Sciences, University of Applied Sciences of Southern Switzerland (SUPSI), Trevano, Canobbio, Switzerland
| | - Agathe Martignier
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Annapaola Caminada
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (ABD); (MT)
| |
Collapse
|
11
|
Xie E, Su Y, Deng S, Kontopyrgou M, Zhang D. Significant influence of phosphorus resources on the growth and alkaline phosphatase activities of Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115807. [PMID: 33096390 DOI: 10.1016/j.envpol.2020.115807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
It is well-accepted that phosphorus, particularly orthophosphate, is a determinant factor in aquatic eutrophication. However, numerous kinds of phosphorus sources exist in real world scenario, and limited studies have characterized the pairwise relationships among abundant different phosphorus sources and the physiological behaviour of algae. The present study developed a high-throughput assay to investigate the effects of 59 different phosphorus sources (equal initial concentration of total phosphorus) on the growth and alkaline phosphatase (AKP) activities of Microcystis aeruginosa, a model cyanobacteria whose predominance holds sway in lake eutrophication. M. aeruginosa cultivated with nucleoside monophosphates (NMPs) had higher growth, relative AKP activities and residual orthophosphate, which were positively intercorrelated. Oppositely, non-NMPs cultivation of M. aeruginosa led to negative relationships between the relative AKP activities and their growth or residual orthophosphate. These results indicated distinct mechanisms for M. aeruginosa to utilize different phosphorus sources in real-world scenario, and both phosphorus source and content are determinant factors on the growth and physiological behaviour of M. aeruginosa. Given the complicated and vast phosphorus pool in the natural environment, phosphorus resources might significantly alter the abundance and physiological behaviour of M. aeruginosa and other bloom-forming algae, then influence the phytoplanktonic community structure and affect the possibility and intensity of algal bloom. Our work hints the underestimation of the restriction factors in lake eutrophication and provides a new tool to study the driven forces of phytoplanktonic community dynamics as phosphorus from both internal and external sources.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, 350007, PR China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China
| | - Maria Kontopyrgou
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 2YW, United Kingdom
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
12
|
Ferro L, Hu YO, Gentili FG, Andersson AF, Funk C. DNA metabarcoding reveals microbial community dynamics in a microalgae-based municipal wastewater treatment open photobioreactor. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Fernández-Juárez V, Bennasar-Figueras A, Sureda-Gomila A, Ramis-Munar G, Agawin NSR. Differential Effects of Varying Concentrations of Phosphorus, Iron, and Nitrogen in N 2-Fixing Cyanobacteria. Front Microbiol 2020; 11:541558. [PMID: 33101223 PMCID: PMC7546424 DOI: 10.3389/fmicb.2020.541558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022] Open
Abstract
Diazotrophs or N2-fixers are one of the most ecologically significant groups in marine ecosystems (pelagic and benthic). Inorganic phosphorus (PO43–) and iron (Fe) can limit the growth and N2-fixing capacities of cyanobacteria. However, studies investigating co-limitation of these factors are lacking. Here, we added different concentrations of PO43– and Fe in two cyanobacterial species whose relatives can be found in seagrass habitats: the unicellular Halothece sp. (PCC 7418) and the filamentous Fischerella muscicola (PCC 73103), grown under different nitrate (NO3–) concentrations and under N2 as sole N source, respectively. Their growth, pigment content, N2-fixation rates, oxidative stress responses, and morphological and cellular changes were investigated. Our results show a serial limitation of NO3– and PO43– (with NO3– as the primary limiting nutrient) for Halothece sp. Simultaneous co-limitation of PO43– and Fe was found for both species tested, and high levels of Fe (especially when added with high PO43– levels) inhibited the growth of Halothece sp. Nutrient limitation (PO43–, Fe, and/or NO3–) enhanced oxidative stress responses, morphological changes, and apoptosis. Furthermore, an extensive bio-informatic analysis describing the predicted Pho, Fur, and NtcA regulons (involved in the survival of cells to P, Fe, and N limitation) was made using the complete genome of Halothece sp. as a model, showing the potential of this strain to adapt to different nutrient regimes (P, Fe, or N).
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma, Spain
| | | | - Antoni Sureda-Gomila
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands and CIBEROBN (Fisiopatología de la Obesidad y la Nutrición), Palma, Spain
| | - Guillem Ramis-Munar
- Cellomic Unit of University Institute of Research in Health Sciences of the Balearic Islands, Palma, Spain
| | - Nona S R Agawin
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma, Spain
| |
Collapse
|
14
|
Zhang T, Qin M, Wei C, Li D, Lu X, Zhang L. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138615. [PMID: 32348945 DOI: 10.1016/j.scitotenv.2020.138615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The bacterial phoD gene encodes alkaline phosphatase plays an important role in the release of bioavailable inorganic phosphorus (P) from organic P in environmental systems. However, phoD gene diversity in suspended particles in shallow freshwater lakes is poorly understood. In this study, we explored the potential relationship between environmental factors and phoD phosphatase gene in suspended particles in different ecosystem types (lake zones) in Lake Taihu, a large shallow eutrophic lake in China. Quantitative PCR and high-throughput sequencing were used to analyze phoD gene abundance and the phoD-harboring bacterial community composition. Our results indicate that the distribution of phoD gene abundance in suspended particles had a high spatiotemporal heterogeneity. The phoD gene abundance in each lake zone decreased significantly from June to September. The dominant phoD-harboring phylum in all samples was Actinobacteria, followed by Proteobacteria, Cyanobacteria and Gemmatimonadetes. The first predominant phoD-harboring genera varied among samples, but most of them belonged to phylum Actinobacteria. Driven by different environmental factors, the phoD-harboring bacterial community structure varied with sampling month and ecosystem type. Nitrate and ammonia nitrogen were the main environmental drivers of phoD-harboring bacterial community in suspended particles in the river mouth zone, while water pH and dissolved oxygen were important factors for the algae-dominated, macrophyte-dominated and central lake zones.
Collapse
Affiliation(s)
- Tingxi Zhang
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Mengyao Qin
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Chao Wei
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Defang Li
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Xiaoran Lu
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Limin Zhang
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| |
Collapse
|
15
|
Correlating the influence of biochemical parameters in environment with pesticide tolerance of non-target algae. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00568-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Glyceroglycolipid Metabolism Regulations under Phosphate Starvation Revealed by Transcriptome Analysis in Synechococcus elongatus PCC 7942. Mar Drugs 2020; 18:md18070360. [PMID: 32668657 PMCID: PMC7401256 DOI: 10.3390/md18070360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Glyceroglycolipids, abundant in cyanobacteria's photosynthetic membranes, present bioactivities and pharmacological activities, and can be widely used in the pharmaceutical industry. Environmental factors could alter the contents and compositions of cyanobacteria glyceroglycolipids, but the regulation mechanism remains unclear. Therefore, the glyceroglycolipids contents and the transcriptome in Synechococcus elongatus PCC 7942 were analyzed under phosphate starvation. Under phosphate starvation, the decrease of monogalactosyl diacylglycerol (MGDG) and increases of digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) led to a decrease in the MGDG/DGDG ratio, from 4:1 to 5:3, after 12 days of cultivation. However, UDP-sulfoquinovose synthase gene sqdB, and the SQDG synthase gene sqdX, were down-regulated, and the decreased MGDG/DGDG ratio was later increased back to 2:1 after 15 days of cultivation, suggesting the regulation of glyceroglycolipids on day 12 was based on the MGDG/DGDG ratio maintaining glyceroglycolipid homeostasis. There are 12 differentially expressed transcriptional regulators that could be potential candidates related to glyceroglycolipid regulation, according to the transcriptome analysis. The transcriptome analysis also suggested post-transcriptional or post-translational regulations in glyceroglycolipid synthesis. This study provides further insights into glyceroglycolipid metabolism, as well as the scientific basis for glyceroglycolipid synthesis optimization and cyanobacteria glyceroglycolipids utilization via metabolic engineering.
Collapse
|
17
|
Fernández-Juárez V, Bennasar-Figueras A, Tovar-Sanchez A, Agawin NSR. The Role of Iron in the P-Acquisition Mechanisms of the Unicellular N 2-Fixing Cyanobacteria Halothece sp., Found in Association With the Mediterranean Seagrass Posidonia oceanica. Front Microbiol 2019; 10:1903. [PMID: 31507547 PMCID: PMC6713934 DOI: 10.3389/fmicb.2019.01903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/02/2019] [Indexed: 11/30/2022] Open
Abstract
Posidonia oceanica, an endemic seagrass of the Mediterranean Sea harbors a high diversity of N2-fixing prokaryotes. One of these is Halothece sp., a unicellular N2-fixing cyanobacteria detected through nifH analysis from the epiphytes of P. oceanica. The most related strain in culture is Halothece sp. PCC 7418 and this was used as the test organism in this study. In the Mediterranean Sea, phosphorus (P) and iron (Fe) can be the major limiting nutrients for N2 fixation. However, information about the mechanisms of P-acquisition and the role of metals (i.e., Fe) in these processes for N2-fixing bacteria is scarce. From our genomic analyses of the test organism and other phylogenetically related N2-fixing strains, Halothece sp. PCC 7418 is one of the strains with the greatest number of gene copies (eight copies) of alkaline phosphatases (APases). Our structural analysis of PhoD (alkaline phosphatase type D) and PhoU (phosphate acquisition regulator) of Halothece sp. PCC 7418 showed the connection among metals (Ca2+ and Fe3+), and the P-acquisition mechanisms. Here, we measured the rates of alkaline phosphatase activity (APA) through MUF-P hydrolysis under different combinations of concentrations of inorganic P (PO43−) and Fe in experiments under N2-fixing (low NO3− availability) and non-N2 fixing (high NO3− availability) conditions. Our results showed that APA rates were enhanced by the increase in Fe availability under low levels of PO43−, especially under N2-fixing conditions. Moreover, the increased PO43−-uptake was reflected in the increased of the P-cellular content of the cells under N2 fixation conditions. We also found a positive significant relationship between cellular P and cellular Fe content of the cells (r2 = 0.71, p < 0.05). Our results also indicated that Fe-uptake in Halothece sp. PCC 7418 was P and Fe-dependent. This study gives first insights of P-acquisition mechanisms in the N2-fixing cyanobacteria (Halothece sp.) found in P. oceanica and highlights the role of Fe in these processes.
Collapse
Affiliation(s)
- Víctor Fernández-Juárez
- Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain
| | - Antoni Bennasar-Figueras
- Grup de Recerca en Microbiologia, Departament de Biologia, Universitat de les Illes Balears (UIB), Palma, Spain
| | - Antonio Tovar-Sanchez
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Sciences, ICMAN (CSIC), Cádiz, Spain
| | - Nona Sheila R Agawin
- Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain
| |
Collapse
|
18
|
Zheng L, Ren M, Xie E, Ding A, Liu Y, Deng S, Zhang D. Roles of Phosphorus Sources in Microbial Community Assembly for the Removal of Organic Matters and Ammonia in Activated Sludge. Front Microbiol 2019; 10:1023. [PMID: 31156575 PMCID: PMC6532738 DOI: 10.3389/fmicb.2019.01023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Various phosphorus sources are utilized by microbes in WWTPs, eventually affecting microbial assembly and functions. This study identified the effects of phosphorus source on microbial communities and functions in the activated sludge. By cultivation with 59 phosphorus sources, including inorganic phosphates (IP), nucleoside-monophosphates (NMP), cyclic-nucleoside-monophosphates (cNMP), and other organophosphates (OP), we evaluated the change in removal efficiencies of total organic carbon (TOC) and ammonia, microbial biomass, alkaline phosphatase (AKP) activity, microbial community structure, and AKP-associated genes. TOC and ammonia removal efficiency was highest in IP (64.8%) and cNMP (52.3%) treatments. Microbial community structure changed significantly across phosphorus sources that IP and cNMP encouraged Enterobacter and Aeromonas, respectively. The abundance of phoA and phoU genes was higher in IP treatments, whereas phoD and phoX genes dominated OP treatments. Our findings suggested that the performance of WWTPs was dependent on phosphorus sources and provided new insights into effective WWTP management.
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, China
| | - Mengli Ren
- College of Water Science, Beijing Normal University, Beijing, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing, China
| | - Yan Liu
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
19
|
Li J, Dittrich M. Dynamic polyphosphate metabolism in cyanobacteria responding to phosphorus availability. Environ Microbiol 2018; 21:572-583. [DOI: 10.1111/1462-2920.14488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/05/2018] [Accepted: 11/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Jiying Li
- Department of Physical and Environmental Sciences; University of Toronto Scarborough; Toronto Ontario M1C 1A4 Canada
| | - Maria Dittrich
- Department of Physical and Environmental Sciences; University of Toronto Scarborough; Toronto Ontario M1C 1A4 Canada
| |
Collapse
|
20
|
Drzyzga D, Lipok J. Glyphosate dose modulates the uptake of inorganic phosphate by freshwater cyanobacteria. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:299-309. [PMID: 29576687 PMCID: PMC5857279 DOI: 10.1007/s10811-017-1231-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 05/26/2023]
Abstract
The usefulness of glyphosate [N-(phosphonomethyl)glycine] as a source of nutritive phosphorus for species of halophilic cyanobacteria has been postulated for years. Our results indicate a stimulating effect of glyphosate on the growth of four out of five examined freshwater species, Anabaena variabilis (CCALA 007), Chroococcus minutus (CCALA 055), Fischerella cf. maior (CCALA 067) and Nostoc cf. muscorum (CCALA 129), in a manner dependent on the applied concentration. The most significant stimulation was observed at a dose of 0.1 mM glyphosate. The decrease in the amount of phosphonate, which correlated with microbial growth, demonstrated that glyphosate may play an important role in cyanobacterial nourishment. Surprisingly, the consumption of organic phosphorus did not start when concentrations of inorganic phosphate (PO43-) had fallen dramatically; instead, the assimilation of both types of phosphorus occurred simultaneously. The greatest decrease in the amount of glyphosate was observed during the first week. The uptake of the standard nutrient-phosphate (PO43-), was strongly dependent on the xenobiotic concentration. When a concentration of 0.1 mM glyphosate was used, the consumption of phosphate decreased in favour of glyphosate assimilation. Our study revealed for the very first time that the presence of inorganic phosphate significantly enhances the bioavailability of glyphosate. Statistical analysis confirmed that the nutritive usage of glyphosate and the absorption of phosphate are features associated with the herbicide concentration rather than features related to the species of freshwater cyanobacterium. This finding supports the thesis of an important role of organic phosphorus in the formation of cyanobacterial blooms and creates the opportunity of using these cyanobacteria to bind both organic and inorganic forms of phosphorus in microalgal biomasses.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
21
|
Tiwari B, Chakraborty S, Srivastava AK, Mishra AK. Biodegradation and rapid removal of methyl parathion by the paddy field cyanobacterium Fischerella sp. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|