1
|
Kündgen M, Jogler C, Kallscheuer N. Substrate utilization and secondary metabolite biosynthesis in the phylum Planctomycetota. Appl Microbiol Biotechnol 2025; 109:123. [PMID: 40369259 PMCID: PMC12078418 DOI: 10.1007/s00253-025-13514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
The phylum Planctomycetota is changing our understanding of bacterial metabolism, driving critical biogeochemical processes through the transformation of complex polymeric substrates into valuable bioactive compounds. Sophisticated methods for cultivation, genome sequencing and genetic strain engineering developed in the last two decades have stimulated detailed studies on cell propagation, metabolic capabilities and potential applications of phylum members beyond the mere isolation and characterization of novel taxa. This review synthesizes recent advances in understanding the Planctomycetota physiology with a focus on the degradation of phototroph-derived polysaccharides, anaerobic ammonium oxidation (anammox) and biosynthesis of secondary metabolites. New data especially collected over the last 5 years justifies more intensive research of the yet uncharacterized pathways of substrate uptake and utilization, as well as genome mining-assisted bioprospection to exploit the phylum's chemical repertoire. KEY POINTS: • Planctomycetes can degrade high-molecular-weight sugars produced by algae • Anaerobic ammonium oxidation (anammox) is used in technical applications • The first secondary metabolites were discovered in the last 5 years.
Collapse
Affiliation(s)
- Madeleine Kündgen
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07745, Jena, Germany.
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
2
|
Haufschild T, Hammer J, Rabold N, Plut V, Jogler C, Kallscheuer N. Novel tools for genomic modification and heterologous gene expression in the phylum Planctomycetota. Appl Microbiol Biotechnol 2025; 109:79. [PMID: 40164722 PMCID: PMC11958385 DOI: 10.1007/s00253-025-13462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Members of the phylum Planctomycetota possess a plethora of intriguing and hitherto underexplored features including an enlarged periplasmic space, asymmetric cell division ("budding"), and a mostly undiscovered small molecule portfolio. Due to the large phylogenetic distance to frequently used and easily genetically accessible model bacteria, most of the established genetic tools are not readily applicable for the here-investigated bacterial phylum. However, techniques for targeted gene inactivation and the introduction of heterologous genes are crucial to investigate the cell biology in the phylum in greater detail. In this study, the targeted genomic modification of model planctomycetes was achieved by enforcing two types of homologous recombination events: simultaneous double homologous recombination for the deletion of coding regions and insertion-duplication mutagenesis for the introduction of foreign DNA into the chromosome. Upon testing the expression of commonly used fluorescent protein-encoding genes, many of the tested native promoters could not be harnessed for variation of the expression strength. Since also four commonly used inducible gene expression systems did not work in the tested model strain Planctopirus limnophila, a native rhamnose-dependent transcriptional regulator/promoter pair was established as an inducible expression system. The expanded molecular toolbox will allow the future characterization of genome-encoded features in the understudied phylum. KEY POINTS: • Two recombination methods were used for the genetic modification of planctomycetes • Commonly used fluorescent proteins are functional in model planctomycetes • A rhamnose-dependent regulator was turned into an inducible expression system.
Collapse
Affiliation(s)
- Tom Haufschild
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Nico Rabold
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Veronika Plut
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743, Jena, Germany.
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
3
|
Sachdeva S, Sarethy IP. Diving into freshwater microbial metabolites: Pioneering research and future prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:282-300. [PMID: 38887995 DOI: 10.1080/09603123.2024.2351153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
In practically every facet of life, especially nutrition, agriculture, and healthcare, microorganisms offer a prospective origin for abundant natural substances and products. Among these microorganisms, bacteria also possess the capability to rapidly acclimate to diverse environments, utilize varied resources, and effectively respond to environmental fluctuations, including those influenced by human activities like pollution and climate change. The ever-changing environment of freshwater bodies influences bacterial communities, offering opportunities for improving health and environmental conservation that remain unexplored. Herein, the study discusses the bacterial taxa along with specialised metabolites with antioxidant, antibacterial, and anticancer activity that have been identified from freshwater environments, thus achieving Sustainable Development Goals addressing health and wellbeing (SDG-3), economic growth (SDG-8) along with industrial development (SDG-9). The present review is intended as a compendium for research teams working in the fields of medicinal chemistry, organic chemistry, clinical research, and natural product chemistry.
Collapse
Affiliation(s)
- Saloni Sachdeva
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Indira P Sarethy
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
4
|
Vitorino IR, Pinto E, Martín J, Mackenzie TA, Ramos MC, Sánchez P, de la Cruz M, Vicente F, Vasconcelos V, Reyes F, Lage OM. Uncovering the biotechnological capacity of marine and brackish water Planctomycetota. Antonie Van Leeuwenhoek 2024; 117:26. [PMID: 38261060 PMCID: PMC10805854 DOI: 10.1007/s10482-023-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
An appealing strategy for finding novel bioactive molecules in Nature consists in exploring underrepresented and -studied microorganisms. Here, we investigated the antimicrobial and tumoral anti-proliferative bioactivities of twenty-three marine and estuarine bacteria of the fascinating phylum Planctomycetota. This was achieved through extraction of compounds produced by the Planctomycetota cultured in oligotrophic medium followed by an antimicrobial screening against ten relevant human pathogens including Gram-positive and Gram-negative bacteria, and fungi. Cytotoxic effects of the extracts were also evaluated against five tumoral cell lines. Moderate to potent activities were obtained against Enterococcus faecalis, methicillin-sensitive and methicillin-resistant Staphylococcus aureus and vancomycin-sensitive and vancomycin-resistant Enterococcus faecium. Anti-fungal effects were observed against Trichophyton rubrum, Candida albicans and Aspergillus fumigatus. The highest cytotoxic effects were observed against human breast, pancreas and melanoma tumoral cell lines. Novipirellula caenicola and Rhodopirellula spp. strains displayed the widest spectrum of bioactivities while Rubinisphaera margarita ICM_H10T affected all Gram-positive bacteria tested. LC-HRMS analysis of the extracts did not reveal the presence of any known bioactive natural product, suggesting that the observed activities are most likely caused by novel molecules, that need identification. In summary, we expanded the scope of planctomycetal species investigated for bioactivities and demonstrated that various strains are promising sources of novel bioactive compounds, which reenforces the potential biotechnological prospects offered by Planctomycetota.
Collapse
Affiliation(s)
- Inês R Vitorino
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal.
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Eugénia Pinto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Jesús Martín
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Thomas A Mackenzie
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Maria C Ramos
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Pilar Sánchez
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Vítor Vasconcelos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
| | - Fernando Reyes
- Fundación MEDINA, PTS Health Sciences Technology Park, Avenida del Conocimiento 34, 18016, Granada, Spain
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal
| |
Collapse
|
5
|
Kumar G, Kallscheuer N, Kashif M, Ahamad S, Jagadeeshwari U, Pannikurungottu S, Haufschild T, Kabuu M, Sasikala C, Jogler C, Ramana CV. Gemmata algarum, a Novel Planctomycete Isolated from an Algal Mat, Displays Antimicrobial Activity. Mar Drugs 2023; 22:10. [PMID: 38276648 PMCID: PMC10817699 DOI: 10.3390/md22010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Axenic cultures of two strains, JC673T and JC717, both belonging to the phylum Planctomycetota, were isolated from distinct geographical locations in India. Strain JC673T was obtained from algal mats of a wetland situated in the state of Kerala, India, while strain JC717 originated from the Central Marine Fisheries Research Institute (CMFRI), state of Tamil Nadu, India. The two strains share 99.9% 16S rRNA gene sequence similarity and are most closely related to Gemmata obscuriglobus UQM 2246T (99.3% 16S rRNA gene sequence identity). The newly isolated strains are Gram-negative, grow aerobically and tolerate up to 4% (w/v) NaCl and a pH of up to 9.0. Cells are spherical and form pink-pigmented colonies. The respiratory quinone is MK-6. Major fatty acids are C18:0, C16:1ω5c and C16:0. Polar lipids include phosphatidylcholine, phosphatidylethanolamine, several unidentified amino lipids, unidentified phospholipids, additional unidentified lipids, and an unidentified choline lipid. The polyamine spermidine is produced by the two strains. The strains have a genome size of about 8.2 Mb with a DNA G+C content of 67.6%. Solvent-based culture extracts of the isolates showed antimicrobial activity against three bacterial test strains. Their phylogenetic position along with differences in morphological, physiological, and genomic features support the classification as a new species of the genus Gemmata, for which we propose the name Gemmata algarum sp. nov. Strain JC673T (=KCTC 72851T = NBRC 114340T) and JC717 are the type and non-type strain of the new species, respectively.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Mohammad Kashif
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Shabbir Ahamad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Uppada Jagadeeshwari
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | - Sreya Pannikurungottu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| | - Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, 07743 Jena, Germany
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India; (G.K.)
| |
Collapse
|
6
|
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Stieleria sedimenti sp. nov., a Novel Member of the Family Pirellulaceae with Antimicrobial Activity Isolated in Portugal from Brackish Sediments. Microorganisms 2022; 10:2151. [PMID: 36363743 PMCID: PMC9692418 DOI: 10.3390/microorganisms10112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/23/2023] Open
Abstract
The phylum Planctomycetota is known for having uncommon biological features. Recently, biotechnological applications of its members have started to be explored, namely in the genus Stieleria. Here, we formally describe a novel Stieleriaisolate designated as strain ICT_E10.1T, obtained from sediments collected in the Tagus estuary (Portugal). Strain ICT_E10.1T is pink-pigmented, spherical to ovoid in shape, and 1.7 µm ± 0.3 × 1.4 µm ± 0.3 in size. Cells cluster strongly in aggregates or small chains, divide by budding, and have prominent fimbriae. Strain ICT_E10.1T is heterotrophic and aerobic. Growth occurs from 20 to 30 °C, from 0.5 to 3% (w/v) NaCl, and from pH 6.5 to 11.0. The analysis of the 16S rRNA gene sequence placed strain ICT_E10.1T into the genus Stieleria with Stieleria neptunia Enr13T as the closest validly described relative. The genome size is 9,813,311 bp and the DNA G+C content is 58.8 mol%. Morphological, physiological, and genomic analyses support the separation of this strain into a novel species, for which we propose the name Stieleria sedimenti represented by strain ICT_E10.1T as the type of strain (=CECT 30514T= DSM 113784T). Furthermore, this isolate showed biotechnological potential by displaying relevant biosynthetic gene clusters and potent activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Dominika Klimek
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
- The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, 2 Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Magdalena Calusinska
- The Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
7
|
Vitorino IR, Klimek D, Calusinska M, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rhodopirellula aestuarii sp. nov., a novel member of the genus Rhodopirellula isolated from brackish sediments collected in the Tagus River estuary, Portugal. Syst Appl Microbiol 2022; 45:126360. [PMID: 36166947 DOI: 10.1016/j.syapm.2022.126360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species. 16S rRNA gene accession number: GenBank = OK001858. Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| | - Dominika Klimek
- Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg; The Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Luxemburg
| | - Magdalena Calusinska
- Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L-4422 Belvaux, Luxemburg
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
8
|
Fernández-López M, Sánchez-Reyes A, Barcelos C, Sidón-Ceseña K, Leite RB, Lago-Lestón A. Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes. Antibiotics (Basel) 2022; 11:antibiotics11070887. [PMID: 35884142 PMCID: PMC9311598 DOI: 10.3390/antibiotics11070887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
The excessive use of antibiotics has triggered the appearance of new resistant strains, which is why great interest has been taken in the search for new bioactive compounds capable of overcoming this emergency in recent years. Massive sequencing tools have enabled the detection of new microorganisms that cannot be cultured in a laboratory, thus opening the door to the search for new biosynthetic genes. The great variety in oceanic environments in terms of pressure, salinity, temperature, and nutrients enables marine microorganisms to develop unique biochemical and physiological properties for their survival, enhancing the production of secondary metabolites that can vary from those produced by terrestrial microorganisms. We performed a search for type I PKS genes in metagenomes obtained from the marine sediments of the deep waters of the Gulf of Mexico using Hidden Markov Models. More than 2000 candidate genes were detected in the metagenomes that code for type I PKS domains, while biosynthetic pathways that may code for other secondary metabolites were also detected. Our research demonstrates the great potential use of the marine sediments of the Gulf of Mexico for identifying genes that code for new secondary metabolites.
Collapse
Affiliation(s)
- Maikel Fernández-López
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico;
| | - Ayixon Sánchez-Reyes
- CONACYT-Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Col. Chamilpa, Cuernavaca 62210, Mexico;
| | - Clara Barcelos
- Posgrado de Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Mexico; (C.B.); (K.S.-C.)
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Mexico
| | - Karla Sidón-Ceseña
- Posgrado de Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Mexico; (C.B.); (K.S.-C.)
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Mexico
| | - Ricardo B. Leite
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal;
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Mexico
- Correspondence:
| |
Collapse
|
9
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:6609431. [PMID: 35709427 DOI: 10.1093/femsec/fiac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial Repetitive Intergenic Consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but also shown the potential for the discovery of bioactive compounds from the novel taxa.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
10
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Lage OM. Rubinisphaera margarita sp. nov., a novel planctomycete isolated from marine sediments collected in the Portuguese north coast. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phylum
Planctomycetota
is constituted by bacteria with unique features that are well adapted to a vast range of habitats. Here, we describe a novel planctomycete isolated from marine sediments collected on a beach in Matosinhos (Portugal) using an iChip-based culturing technique. Strain ICM_H10T forms beige-coloured colonies in modified M14 medium and its cells are spherical to ovoid in shape, stalked, rosette-forming and showing motility in a phase of the life cycle. Transmission electron microscopy observations showed a typical planctomycetal cell plan and cell division by budding. This strain requires salt for growth and grows in the range of 2.0–5.0 % (w/v) NaCl, from 20 to 37 °C, within a pH of 6.0–9.0 and is able to use diverse nitrogen and carbon sources. It is heterotrophic, aerobic and capable of microaerobic growth. This strain has a genome size of approximately 6.0 Mb and a G+C content of 58.1 mol%. A 16S rRNA gene-based phylogenetic analysis supports the association of strain ICM_H10T to the phylum
Planctomycetota
and the family
Planctomycetaceae
, as it shares only 96.8 and 96.4% similarity to its closest relatives
Rubinisphaera italica
Pan54T and
Rubinisphaera brasiliensis
IFAM 1448T, respectively. Other phylogenetic markers also support the separation of this strain into a novel species. Morphological, physiological and genomic comparisons between strain ICM_H10T and its closest relatives strongly suggest that ICM_H10T represents a new species of the genus
Rubinisphaera
, for which we propose the name Rubinisphaera margarita sp. nov., with ICM_H10T (=CECT 30326T=LMG 32234T) as type strain.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Olga Maria Lage
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto,, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
12
|
Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V, Lage OM. Novel and Conventional Isolation Techniques to Obtain Planctomycetes from Marine Environments. Microorganisms 2021; 9:2078. [PMID: 34683399 PMCID: PMC8541047 DOI: 10.3390/microorganisms9102078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - José Diogo Neves Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain;
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|