1
|
Budikhina AS, Murugina NE, Maximchik PV, Dagil YA, Nikolaeva AM, Balyasova LS, Murugin VV, Selezneva EM, Pashchenkova YG, Chkadua GZ, Pinegin BV, Pashenkov MV. Interplay between NOD1 and TLR4 Receptors in Macrophages: Nonsynergistic Activation of Signaling Pathways Results in Synergistic Induction of Proinflammatory Gene Expression. THE JOURNAL OF IMMUNOLOGY 2021; 206:2206-2220. [PMID: 33846227 DOI: 10.4049/jimmunol.2000692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/21/2021] [Indexed: 11/19/2022]
Abstract
Interactions between pattern-recognition receptors shape innate immune responses to pathogens. NOD1 and TLR4 are synergistically interacting receptors playing a pivotal role in the recognition of Gram-negative bacteria. However, mechanisms of their cooperation are poorly understood. It is unclear whether synergy is produced at the level of signaling pathways downstream of NOD1 and TLR4 or at more distal levels such as gene transcription. We analyzed sequential stages of human macrophage activation by a combination of NOD1 and TLR4 agonists (N-acetyl-d-muramyl-l-alanyl-d-isoglutamyl-meso-diaminopimelic acid [M-triDAP] and LPS, respectively). We show that events preceding or not requiring activation of transcription, such as activation of signaling kinases, rapid boost of glycolysis, and most importantly, nuclear translocation of NF-κB, are regulated nonsynergistically. However, at the output of the nucleus, the combination of M-triDAP and LPS synergistically induces expression of a subset of M-triDAP- and LPS-inducible genes, particularly those encoding proinflammatory cytokines (TNF, IL1B, IL6, IL12B, and IL23A). This synergistic response develops between 1 and 4 h of agonist treatment and requires continuous signaling through NOD1. The synergistically regulated genes have a lower basal expression and higher inducibility at 4 h than those regulated nonsynergistically. Both gene subsets include NF-κB-inducible genes. Therefore, activation of the NF-κB pathway does not explain synergistic gene induction, implying involvement of other transcription factors. Inhibition of IKKβ or p38 MAPK lowers agonist-induced TNF mRNA expression but does not abolish synergy. Thus, nonsynergistic activation of NOD1- and TLR4-dependent signaling pathways results in the synergistic induction of a proinflammatory transcriptional program.
Collapse
Affiliation(s)
- Anna S Budikhina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Nina E Murugina
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Polina V Maximchik
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Yulia A Dagil
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Anna M Nikolaeva
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, Russia; and
| | - Lyudmila S Balyasova
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Vladimir V Murugin
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | | - Yulia G Pashchenkova
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Georgy Z Chkadua
- Laboratory of Experimental Diagnostics and Biotherapy of Tumors, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris V Pinegin
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Mikhail V Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia;
| |
Collapse
|
2
|
Shebzukhov YV, Horn K, Brazhnik KI, Drutskaya MS, Kuchmiy AA, Kuprash DV, Nedospasov SA. Dynamic changes in chromatin conformation at the TNF transcription start site in T helper lymphocyte subsets. Eur J Immunol 2013; 44:251-64. [PMID: 24009130 DOI: 10.1002/eji.201243297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 07/23/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor (TNF) is one of the key primary response genes in the immune system that can be activated by a variety of stimuli. Previous analysis of chromatin accessibility to DNaseI demonstrated open chromatin conformation of the TNF proximal promoter in T cells. Here, using chromatin probing with restriction enzyme EcoNI and micrococcal nuclease we show that in contrast to the proximal promoter, the TNF transcription start site remains in a closed chromatin configuration in primary T helper (Th) cells, but acquires an open state after activation or polarization under Th1 and Th17 conditions. We further demonstrate that transcription factor c-Jun plays a pivotal role in the maintenance of open chromatin conformation at the transcription start site of the TNF gene.
Collapse
Affiliation(s)
- Yury V Shebzukhov
- German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
4
|
Moelants EAV, Mortier A, Van Damme J, Proost P. Regulation of TNF-α with a focus on rheumatoid arthritis. Immunol Cell Biol 2013; 91:393-401. [PMID: 23628802 DOI: 10.1038/icb.2013.15] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 12/13/2022]
Abstract
Cytokines and chemokines represent two important groups of proteins that control the human immune system. Dysregulation of the network in which these immunomodulators function can result in uncontrolled inflammation, leading to various diseases including rheumatoid arthritis (RA), characterized by chronic inflammation and bone erosion. Potential triggers of RA include autoantibodies, cytokines and chemokines. The tight regulation of cytokine and chemokine production, and biological activity is important. Tumor necrosis factor-α (TNF-α) is abundantly present in RA patients' serum and the arthritic synovium. This review, therefore, discusses first the role and regulation of the major proinflammatory cytokine TNF-α, in particular the regulation of TNF-α production, post-translational processing and signaling of TNF-α and its receptors. Owing to the important role of TNF-α in RA, the TNF-α-producing cells and the dynamics of its expression, the direct and indirect action of this cytokine and possible biological therapy for RA are described.
Collapse
Affiliation(s)
- Eva A V Moelants
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
5
|
Dai Z, Lu L, Yang Z, Mao Y, Lu J, Li C, Qi W, Chen Y, Yao Y, Li L, Chen S, Zhang Y, Cai W, Yang X, Gao G. Kallikrein-binding protein inhibits LPS-induced TNF-α by upregulating SOCS3 expression. J Cell Biochem 2013; 114:1020-8. [DOI: 10.1002/jcb.24441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022]
|