1
|
Juciute S, Maciulis V, Luciunaite A, Liesyte J, Plikusiene I. Comparison of the ACE2 receptor and monoclonal antibodies immobilisation strategies for the sensitive detection of SARS-CoV-2 variants of concern. Anal Chim Acta 2025; 1357:344075. [PMID: 40316389 DOI: 10.1016/j.aca.2025.344075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
Investigation of antibody or receptor immobilisation and binding to the target analyte is essential for the development of effective immunoassays. In our research, we applied the combination of two surface-sensitive methods: spectroscopic ellipsometry and quartz crystal microbalance with dissipation. It enabled quantitative investigation of optical and mechanical properties of formed biomolecule layers consisting of monoclonal antibodies (mAb) or angiotensin-converting enzyme 2 (ACE2) receptors coupled with the Fc fragment, in complex with severe acute respiratory syndrome coronavirus 2 spike Omicron variant (SCoV2-oS). Random and site-directed immobilisation of ACE2 receptor gave 1.8 and 2.4 times higher dry surface mass density compared to random and site-direct mAbs immobilisation, respectively. Therefore, ACE2 had better potential for more sensitive detection of the target analyte SCoV2-oS. However, the binding of SCoV2-oS to site-directed ACE2 resulted in a low 80 ng/cm2 surface mass compared to other samples. Moreover, ΔD/ΔF data revealed two-step binding of SCoV2-oS to ACE2 and mAbs. Furthermore, calculated affinity constants (KD) showed that both ACE2 and mAb have high affinity to SCoV2-oS (in the range of 10-10 to 10-11 M), and their orientation on the surface had only a minor impact on KD values. Our findings in this investigation indicated that ACE2 coupled with the Fc fragment is as effective in the recognition of SARS-CoV-2 as mAbs and it can be successfully applied for the development of immunoassays. Considering SARS-CoV-2 mutates for a better S protein binding to the ACE2 receptor, using ACE2 as a biorecognition element is useful.
Collapse
Affiliation(s)
- Silvija Juciute
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius, Lithuania; NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225, Vilnius, Lithuania
| | - Vincentas Maciulis
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius, Lithuania
| | - Asta Luciunaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, Vilnius, Lithuania
| | - Justina Liesyte
- NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225, Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius, Lithuania; NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
2
|
García-Maceira T, García-Maceira FI, González-Reyes JA, Paz-Rojas E. Highly enhanced ELISA sensitivity using acetylated chitosan surfaces. BMC Biotechnol 2020; 20:41. [PMID: 32814567 PMCID: PMC7437170 DOI: 10.1186/s12896-020-00640-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background The enzyme-linked immunosorbent assay (ELISA), is the most widely used and reliable clinical routine method for the detection of important protein markers in healthcare. Improving ELISAs is crucial for detecting biomolecules relates to health disorders and facilitating diagnosis at the early diseases stages. Several methods have been developed to improve the ELISA sensitivity through immobilization of antibodies on the microtiter plates. We have developed a highly sensitive ELISA strategy based on the preparation of acetylated chitosan surfaces in order to improve the antibodies orientation. Results Chitin surfaces were obtained by mixing small quantities of chitosan and acetic anhydride in each well of a microtiter plate. Anti-c-myc 9E10 low affinity antibody fused to ChBD was cloned and expressed in CHO cells obtaining the anti-c-myc-ChBD antibody. We found that anti c-myc-ChBD binds specifically to the chitin surfaces in comparison with anti-c-myc 9E10, which did not. Chitin surface was used to develop a sandwich ELISA to detect the chimeric human protein c-myc-GST-IL8 cloned and expressed in Escherichia coli. The ELISA assays developed on chitin surfaces were 6-fold more sensitive than those performed on standard surface with significant differences (p<0,0001). Conclusions As shown here, acetylated chitosan surfaces improve the antibody orientation on the substrate and constitute a suitable method to replace the standard surfaces given the stability over time and the low cost of its preparation.
Collapse
Affiliation(s)
- Tania García-Maceira
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain.
| | - Fé I García-Maceira
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Córdoba, Spain
| | - Elier Paz-Rojas
- Canvax Biotech; Parque Científico y Tecnológico Rabanales 21, c/Astrónoma Cecilia Payne s/n, Edificio Canvax, 14014, Córdoba, Spain
| |
Collapse
|
3
|
Shpilevaya MV, Runina AV, Filippova MA, Kubanov AA. [Сomparison of immunoarrays for syphilis diagnostics produced by co-polymerization immobilization and non-contact printing techniques.]. Klin Lab Diagn 2020; 65:16-23. [PMID: 32155002 DOI: 10.18821/0869-2084-2020-65-1-16-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022]
Abstract
The aim of the study was to investigate the characteristics of immunoarrays (microarrays) produced by co-polymerization immobilization and non-contact printing techniques for enhancing the capacities of syphilis diagnostics. In diagnostic context immunoarrays of both protein immobilization techniques have shown high sensitivity and specificity together with potency to differentiate syphilis stages in serologic assays. The article discloses the advantages and limitations of non-contact printing techniques as well as the results and problems revealed in the study. Solution of these problems in future may provide the development of new serodiagnostic tools with higher accuracy of the results.
Collapse
Affiliation(s)
- M V Shpilevaya
- State Research Center of Dermatovenereology and Cosmetology, 107076, Moscow, Russia
| | - A V Runina
- State Research Center of Dermatovenereology and Cosmetology, 107076, Moscow, Russia
| | - M A Filippova
- The V.A. Engelhardt Institute of Molecular Biology, 119991, Moscow, Russia
| | - A A Kubanov
- State Research Center of Dermatovenereology and Cosmetology, 107076, Moscow, Russia
| |
Collapse
|
4
|
Bollella P, Katz E. Enzyme-Based Biosensors: Tackling Electron Transfer Issues. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3517. [PMID: 32575916 PMCID: PMC7349488 DOI: 10.3390/s20123517] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022]
Abstract
This review summarizes the fundamentals of the phenomenon of electron transfer (ET) reactions occurring in redox enzymes that were widely employed for the development of electroanalytical devices, like biosensors, and enzymatic fuel cells (EFCs). A brief introduction on the ET observed in proteins/enzymes and its paradigms (e.g., classification of ET mechanisms, maximal distance at which is observed direct electron transfer, etc.) are given. Moreover, the theoretical aspects related to direct electron transfer (DET) are resumed as a guideline for newcomers to the field. Snapshots on the ET theory formulated by Rudolph A. Marcus and on the mathematical model used to calculate the ET rate constant formulated by Laviron are provided. Particular attention is devoted to the case of glucose oxidase (GOx) that has been erroneously classified as an enzyme able to transfer electrons directly. Thereafter, all tools available to investigate ET issues are reported addressing the discussions toward the development of new methodology to tackle ET issues. In conclusion, the trends toward upcoming practical applications are suggested as well as some directions in fundamental studies of bioelectrochemistry.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, NY 13699-5810, USA;
| | | |
Collapse
|
5
|
Svalova TS, Malysheva NN, Bubekova AK, Saigushkina AA, Medvedeva MV, Kozitsina AN. Effect of the Method for Immobilizing Receptor Layer on the Analytical Characteristics of a Label-Free Electrochemical Immunosensor for the Determination of Measles Antibodies. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s106193482002015x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Lin CH, Lin MJ, Huang JD, Chuang YS, Kuo YF, Chen JC, Wu CC. Label-Free Impedimetric Immunosensors Modulated by Protein A/Bovine Serum Albumin Layer for Ultrasensitive Detection of Salbutamol. SENSORS 2020; 20:s20030771. [PMID: 32023863 PMCID: PMC7038488 DOI: 10.3390/s20030771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022]
Abstract
The sensing properties of immunosensors are determined not only by the amount of immobilized antibodies but also by the number of effective antigen-binding sites of the immobilized antibody. Protein A (PA) exhibits a high degree of affinity with the Fc part of IgG antibody to feasibly produce oriented antibody immobilization. This work proposes a simple method to control the PA surface density on gold nanostructure (AuNS)-deposited screen-printed carbon electrodes (SPCEs) by mixing concentration-varied PA and bovine serum albumin (BSA), and to explore the effect of PA density on the affinity attachment of anti-salbutamol (SAL) antibodies by electrochemical impedance spectroscopy. A concentration of 100 μg/mL PA and 100 μg/mL BSA can obtain a saturated coverage on the 3-mercaptoproponic acid (MPA)/AuNS/SPCEs and exhibit a 50% PA density to adsorb the amount of anti-SAL, more than other concentration-varied PA/BSA-modified electrodes. Compared with the randomly immobilized anti-SAL/MPA/AuNS/SPCEs and the anti-SAL/PA(100 μg/mL):BSA(0 μg/mL)/MPA/AuNS/SPCE, the anti-SAL/PA(100 μg/mL): BSA(100 μg/mL)/MPA/AuNS/SPCE-based immunosensors have better sensing properties for SAL detection, with an extremely low detection limit of 0.2 fg/mL and high reproducibility (<2.5% relative standard deviation). The mixture of PA(100 μg/mL):BSA(100 μg/mL) for the modification of AuNS/SPCEs has great promise for forming an optimal protein layer for the oriented adsorption of IgG antibodies to construct ultrasensitive SAL immunosensors.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Ming-Jie Lin
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Jie-De Huang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Yu-Sheng Chuang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
| | - Yu-Fen Kuo
- Metal Industries Research & Development Centre, Kaohsiung 811, Taiwan;
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
- Correspondence: (J.-C.C.); (C.-C.W.); Tel.: +886-3-5712-121 (ext. 54047) (J.-C.C.); +886-4-2285-1268 (C.-C.W.)
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan; (C.-H.L.); (M.-J.L.); (J.-D.H.); (Y.-S.C.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd., South Dist., Taichung City 402, Taiwan
- Correspondence: (J.-C.C.); (C.-C.W.); Tel.: +886-3-5712-121 (ext. 54047) (J.-C.C.); +886-4-2285-1268 (C.-C.W.)
| |
Collapse
|
7
|
Putti M, de Jong SMJ, Stassen OMJA, Sahlgren CM, Dankers PYW. A Supramolecular Platform for the Introduction of Fc-Fusion Bioactive Proteins on Biomaterial Surfaces. ACS APPLIED POLYMER MATERIALS 2019; 1:2044-2054. [PMID: 31423488 PMCID: PMC6691680 DOI: 10.1021/acsapm.9b00334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Bioorthogonal chemistry is an excellent method for functionalization of biomaterials with bioactive molecules, as it allows for decoupling of material processing and bioactivation. Here, we report on a modular system created by means of tetrazine/trans-cyclooctene (Tz/TCO) click chemistry undergoing an inverse electron demand Diels-Alder cycloaddition. A reactive supramolecular surface based on ureido-pyrimidinones (UPy) is generated via a UPy-Tz additive, in order to introduce a versatile TCO-protein G conjugate for immobilization of Fc-fusion proteins. As a model bioactive protein, we introduced Fc-Jagged1, a Notch ligand, to induce Notch signaling activity on the material. Interestingly, HEK293 FLN1 cells expressing the Notch1 receptor were repelled by films modified with TCO-protein G but adhered and spread on functionalized electrospun meshes. This indicates that the material processing method influences the biocompatibility of the postmodification. Notch signaling activity was upregulated 5.6-fold with respect to inactive controls on electrospun materials modified with TCO-protein G/Fc-Jagged1. Furthermore, downstream effects of Notch signaling were detected on the gene level in vascular smooth muscle cells expressing the Notch3 receptor. Taken together, our results demonstrate the successful use of a modular supramolecular system for the postprocessing modification of solid materials with functional proteins.
Collapse
Affiliation(s)
- Matilde Putti
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Simone M. J. de Jong
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Oscar M. J. A. Stassen
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Cecilia M. Sahlgren
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty
for Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku
Centre for Biotechnology, University of
Turku and Åbo Akademi University, Turku, Finland
| | - Patricia Y. W. Dankers
- Department
of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven, The Netherlands
- Department
of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
8
|
Barbosa AI, Borges J, Meira DI, Costa D, Rodrigues MS, Rebelo R, Correlo VM, Vaz F, Reis RL. Development of label-free plasmonic Au-TiO 2 thin film immunosensor devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:424-432. [PMID: 30948078 DOI: 10.1016/j.msec.2019.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/07/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
This work reports on the development of a label-free immunosensor technology, based on nanoplasmonic Au-TiO2 thin films. The Au-TiO2 thin films were prepared by cost-effective reactive DC magnetron sputtering, followed by a thermal annealing procedure. The latter promoted the growth of the Au nanoparticles throughout the TiO2 matrix and induced some morphological changes, which are the base for the immunosensor device functionality. A posterior plasma etching treatment was required to partially expose the nanoparticles to the biological environment. It gave rise to a 6-fold increase of the total area of gold exposed, allowing further possibilities for the sensor sensitivity enhancement. Experimental results demonstrated the successful functionalization of the films' surface with antibodies, with the immobilization occurring preferentially in the exposed nanoparticles and negligibly on the TiO2 matrix. Antibody adsorption surface coverage studies revealed antibody low affinity to the film's surface. Nevertheless, immunoassay development experiments showed a strong and active immobilized antibody monolayer at an optimized antibody concentration. This allowed a 236 signal-to-noise-ratio in a confocal microscope, using mouse IgG and 100 ng/ml of Fab-specific anti-mouse IgG-FITC conjugated. Label-free detection of the optimized antibody monolayer on Au-TiO2 thin films was also tested, revealing an expected redshift in the LSPR band, which demonstrates the suitability for the development of cost-effective, label-free LSPR based immunosensor devices.
Collapse
Affiliation(s)
- Ana I Barbosa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joel Borges
- Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Diana I Meira
- Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Diogo Costa
- Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Marco S Rodrigues
- Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rita Rebelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Filipe Vaz
- Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
9
|
Rebelo R, Barbosa AI, Caballero D, Kwon IK, Oliveira JM, Kundu SC, Reis RL, Correlo VM. 3D biosensors in advanced medical diagnostics of high mortality diseases. Biosens Bioelectron 2019; 130:20-39. [PMID: 30716590 DOI: 10.1016/j.bios.2018.12.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 11/18/2022]
Abstract
Cardiovascular diseases, cancer, and diabetes are high mortality diseases, which account for almost two thirds of all deaths worldwide. Their early detection and continuous evaluation are fundamental for an improved patient prognosis and reduced socioeconomic impact. Current biosensor technologies are typically based on the analysis of whole blood samples from patients for the detection of disease-specific biomarkers. However, these technologies display serious shortcomings, such as reduced sensitivity and dynamic range, limited in vivo applicability, and lack of continuous monitoring. There is the urgent need for new diagnostic and treatment follow-up tools, which allow for the early detection of the pathology as well as for the continuous monitoring of the physiological responses to specific therapies. During the last years, a new generation of biosensor technologies with improved performance has emerged in the biomedical sector. The combination of advanced biomaterial methods, biochemical tools, and micro/nanotechnology approaches has resulted in the development of innovative three-dimensional (3D) biosensor platforms for advanced medical diagnosis. In this review, we report the most recent advances in the field of 3D biosensors for clinical applications, focusing on the diagnosis and monitoring of cardiovascular diseases, cancer, and diabetes. We discuss about their clinical performance compared to standard biosensor technologies, their implantable capability, and their integration into microfluidic devices to develop clinically-relevant models. Overall, we anticipate that 3D biosensors will drive us toward a new paradigm in medical diagnosis, resulting in real-time in vivo biosensors capable to significantly improve patient prognosis.
Collapse
Affiliation(s)
- Rita Rebelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.
| | - Ana I Barbosa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02477, Republic of Korea.
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal; Department of Dental Materials, School of Dentistry, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02477, Republic of Korea; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - Vitor M Correlo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associated Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
10
|
Vologzhannikova AA, Khorn PA, Kazakov AS, Permyakov EA, Uversky VN, Permyakov SE. Effects of his-tags on physical properties of parvalbumins. Cell Calcium 2019; 77:1-7. [DOI: 10.1016/j.ceca.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
|
11
|
Svalova TS, Malysheva NN, Kozitsina AN. Structure of the receptor layer in electrochemical immunosensors. Modern trends and prospects of development. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1951-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Surface engineering of poly(methylmethacrylate): Effects on fluorescence immunoassay. Biointerphases 2017; 12:02C415. [PMID: 28587470 DOI: 10.1116/1.4984010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The authors present surface engineering modifications through chemistry of poly(methylmethacrylate) (PMMA) that have dramatic effects on the result of surface-bound fluorescence immunoassays, both for specific and nonspecific signals. The authors deduce the most important effect to be clustering of antibodies on the surface leading to significant self-quenching. Secondary effects are attributable to the formation of sparse multilayers of antibody. The authors compare PMMA as an antibody support surface with ultraviolet-ozone oxidized PMMA and also to substrates that were, after the oxidation, surface modified by a four-unit poly(ethyleneglycol) carboxylic acid (PEG4), a branched tricarboxylic acid, and a series of carboxylic acid-terminated dendrimers, from generation 1.5 to 5.5. Fluorescence immunoassay and neutron reflectometry were used to compare the apparent antibody surface loading, antigen binding and nonspecific binding on these various surfaces using anti-human IgG as a model antibody, chemically coupled to the surface by amide formation. Simple physical adsorption of the antibody on PMMA resulted in a thick antibody multilayer with small antigen binding capacity. On the carboxylated surfaces, with chemical coupling, a simple monolayer was formed. The authors deduce that antibody clustering was driven by conformational inflexibility and high carboxylate density. The PEG4-modified surface was the most conformationally flexible. The dendrimer-modified interfaces showed a collapse and densification. In fluorescence immunoassay, the optimal combination of high specific and low nonspecific fluorescence signal was found for the G3.5 dendrimer.
Collapse
|
13
|
Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017; 12:02D301. [DOI: 10.1116/1.4978435] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Fusion of polymeric material-binding peptide to cell-adhesion artificial proteins enhances their biological function. Biointerphases 2017; 12:021002. [DOI: 10.1116/1.4979577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Kozitsina A, Svalova T, Malysheva N, Glazyrina Y, Matern A, Rusinov V. Determination ofStaphylococcus aureusB-1266 by an Enzyme-Free Electrochemical Immunosensor Incorporating Magnetite Nanoparticles. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1204312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|