1
|
Azieva AM, Sheynov AA, Kirillova DA, Tatarskiy EV, Georgieva SG, Soshnikova NV. PHF10, a Subunit of the PBAF Chromatin Remodeling Complex, Changes Its Localization and Interacts with c-FOS during the Initiation of Long-Term Potentiation in Neuronal Culture. Mol Biol 2021. [DOI: 10.1134/s0026893321050034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Soshnikova N, Tatarskiy E, Tatarskiy V, Klimenko N, Shtil AA, Nikiforov M, Georgieva S. PHF10 subunit of PBAF complex mediates transcriptional activation by MYC. Oncogene 2021; 40:6071-6080. [PMID: 34465901 PMCID: PMC8863208 DOI: 10.1038/s41388-021-01994-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/24/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The PBAF complex, a member of SWI/SNF family of chromatin remodelers, plays an essential role in transcriptional regulation. We revealed a disease progression associated elevation of PHF10 subunit of PBAF in clinical melanoma samples. In melanoma cell lines, PHF10 interacts with MYC and facilitates the recruitment of PBAF complex to target gene promoters, therefore, augmenting MYC transcriptional activation of genes involved in the cell cycle progression. Depletion of either PHF10 or MYC induced G1 accumulation and a senescence-like phenotype. Our data identify PHF10 as a pro-oncogenic mechanism and an essential novel link between chromatin remodeling and MYC-dependent gene transcription.
Collapse
Affiliation(s)
- N.V. Soshnikova
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia,Corresponding authors: (N.V.Soshnikova); (S.G.Georgieva)
| | - E.V. Tatarskiy
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - V.V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - N.S. Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - A. A. Shtil
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - M.A. Nikiforov
- Department of Cancer Biology, Wake Forest University, Medical Center Drive, Winston-Salem, NC 27101, USA
| | - S.G. Georgieva
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia,Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia,Corresponding authors: (N.V.Soshnikova); (S.G.Georgieva)
| |
Collapse
|
3
|
Kim B, Luo Y, Zhan X, Zhang Z, Shi X, Yi J, Xuan Z, Wu J. Neuronal activity-induced BRG1 phosphorylation regulates enhancer activation. Cell Rep 2021; 36:109357. [PMID: 34260936 PMCID: PMC8315893 DOI: 10.1016/j.celrep.2021.109357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022] Open
Abstract
Neuronal activity-induced enhancers drive gene activation. We demonstrate that BRG1, the core subunit of SWI/SNF-like BAF ATP-dependent chromatin remodeling complexes, regulates neuronal activity-induced enhancers. Upon stimulation, BRG1 is recruited to enhancers in an H3K27Ac-dependent manner. BRG1 regulates enhancer basal activities and inducibility by affecting cohesin binding, enhancer-promoter looping, RNA polymerase II recruitment, and enhancer RNA expression. We identify a serine phosphorylation site in BRG1 that is induced by neuronal stimulations and is sensitive to CaMKII inhibition. BRG1 phosphorylation affects its interaction with several transcription co-factors, including the NuRD repressor complex and cohesin, possibly modulating BRG1-mediated transcription outcomes. Using mice with knockin mutations, we show that non-phosphorylatable BRG1 fails to efficiently induce activity-dependent genes, whereas phosphomimic BRG1 increases enhancer activity and inducibility. These mutant mice display anxiety-like phenotypes and altered responses to stress. Therefore, we reveal a mechanism connecting neuronal signaling to enhancer activities through BRG1 phosphorylation.
Collapse
Affiliation(s)
- BongWoo Kim
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Luo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zilai Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuanming Shi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiaqing Yi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiang Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Sheynov AA, Tatarskiy VV, Tatarskiy EV, Nabirochkina EN, Georgieva SG, Soshnikova NV. The sequential phosphorylation of PHF10 subunit of the PBAF chromatin-remodeling complex determines different properties of the PHF10 isoforms. Biol Open 2020; 9:bio.043943. [PMID: 31911482 PMCID: PMC6994943 DOI: 10.1242/bio.043943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian PBAF subfamily of SWI/SNF chromatin remodeling complexes plays a wide role in the regulation of gene expression. PHF10 is a subunit of the signature module of PBAF, responsible for its interaction with chromatin. PHF10 is represented by four different isoforms, which are alternatively incorporated in the complex. Two of PHF10 isoforms lacking C-terminal PHD domains contain a cluster of phosphorylated serine residues, designated as X-cluster. In the present study, we explore the phosphorylation of the X-cluster in detail. We identified additional phosphorylated serine residues and designated them as either frequently or rarely phosphorylated. The X-cluster consists of two independently phosphorylated subclusters. Phosphorylation of the second subcluster depends on phosphorylation of a primary serine 327. These two subclusters surround a sequence, which is predicted to be a nuclear localization sequence (NLS3). The NLS3 does not affect localization of PHF10 isoforms. However, it is essential for X-cluster phosphorylation and increased stability of isoforms that lack PHD. Conversely, the presence of NLS3 signal in isoforms that contain C-terminal PHD domains reduces their stability. Thus, phosphorylation of PHF10 isoforms regulates their cell level, determining the rate of incorporation in PBAF. This may alter the pattern of PBAF regulated genes. Summary: The sequential phosphorylation of the linker domain of PHF10 subunit of PBAF chromatin remodeling complex is triggered by two primarily phosphorylated serines and determines the different properties of PHF10 isoforms.
Collapse
Affiliation(s)
- Andrey A Sheynov
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow 119991, Russia
| | - Victor V Tatarskiy
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow 119991, Russia
| | - Eugene V Tatarskiy
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow 119991, Russia
| | - Elena N Nabirochkina
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow 119991, Russia
| | - Sofia G Georgieva
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow 119991, Russia
| | - Nataliya V Soshnikova
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, Moscow 119991, Russia
| |
Collapse
|
5
|
Viryasova GM, Tatarskiy VV, Sheynov AA, Tatarskiy EV, Sud'ina GF, Georgieva SG, Soshnikova NV. PBAF lacking PHD domains maintains transcription in human neutrophils. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118525. [PMID: 31398409 DOI: 10.1016/j.bbamcr.2019.118525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022]
Abstract
The myeloid precursor cell differentiation requires an extensive chromatin remodeling. We show that the level of the PBAF chromatin remodeling complex decreases following the start of differentiation of myeloid precursors, becoming very low in the terminally differentiated peripheral blood (PB) neutrophils where it co-localizes with Pol II on the transcriptionally active chromatin. Previously, we have shown that the PHF10 subunit of the PBAF signature module has four isoforms, two of them (PHF10-P) contain a tandem of C-terminal PHD domains. We found that out of four PHF10 isoforms present in the myeloid precursor cells, only the PHF10-Ss isoform lacking PHD domains, is actively expressed in the PB neutrophils. In particular, the longest of the PHF10 isoforms (PHF10-Pl), which is essential for proliferation, completely disappears in PB neutrophils. In addition, in the myeloid precursors, promoters of neutrophil-specific genes are associated with the PHD-containing isoforms, together with PBAF and Pol II, when these genes are inactive and only during their activation stage. However, at the later stages of differentiation, when neutrophil-specific genes are actively transcribed, PHF10-P isoforms on their promoters are replaced by the PHF10-S isoforms. Evidently, PHD domains of PHF10 are essential for active chromatin remodeling during transcription activation, but are dispensable for the constantly transcribed genes.
Collapse
Affiliation(s)
- Galina M Viryasova
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia; The A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, 1, Building 40, Moscow 119992, Russia
| | - Victor V Tatarskiy
- Department of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia
| | - Andrey A Sheynov
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia
| | - Eugene V Tatarskiy
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia
| | - Galina F Sud'ina
- The A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, 1, Building 40, Moscow 119992, Russia
| | - Sofia G Georgieva
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia.
| | - Nataliya V Soshnikova
- Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow 119334, Russia.
| |
Collapse
|
6
|
Sheynov AA, Tatarskiy VV, Azieva AM, Georgieva SG, Soshnikova NV. Different functions of PHF10 isoforms – subunits of the PBAF chromatin remodeling complex. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chromatin remodelling multiprotein complexes play an important role in regulation of gene expression in embryogenesis and in the adult organism. Mutations in the subunits of the complexes are often lethal or lead to developmental defects. Complexes consist of core subunits and a specific module. The core consists of ATPase and structure subunits, specific subunits of the module are necessary for chromatin binding. PHF10 (PHD finger protein 10) is a subunit of the PBAF (polybromo-associated BAF) chromatin remodelling complex subfamily. Conserved and highly regulated PHF10 is ubiquitously expressed in mammals as four different isoforms. The isoforms of PHF10 differ by domain structures and posttranslational modifications. All isoforms are highly regulated and included in the PBAF complex in a mutually exclusive manner. Two of the PHF10 isoforms (PHF10-P) are expressed at a high level in neuronal and myeloid progenitors and are necessary for cell proliferation. These isoforms contain PHD (plant homeodomain) fingers for nucleosome binding and recruit RNA polymerase II on the promoters of cell cycle genes. Two other isoforms (PHF10-S) instead of PHD have PDSM (phosphorylation-dependent sumoylation motif), the motif for SUMO1 conjugation. PHF10 is the most unstable subunit of the PBAF complex. Stability can alter the turnover rate of the subunits of the PBAF complex. All PHF10 isoforms are degraded by β-TrCP ubiquitin ligase but PHF10-S isoforms contain a cluster of serins (X-cluster) for multiple phosphorylation by casein kinase I. This phosphorylation protects the β-TrCP degron from β-TrCP recognition and subsequently stabilizes the PHF10-S isoforms. Thus, the incorporation of PHF10 isoforms with different phosphorylation patterns and different stability into the PBAF complexes alters the functions of the entire PBAF complex and determines the range of genes undergoing remodelling.
Collapse
Affiliation(s)
- A. A. Sheynov
- Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors
| | - V. V. Tatarskiy
- Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors
| | - A. M. Azieva
- Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors; National Research Center “Kurchatov Institute”
| | - S. G. Georgieva
- Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors
| | - N. V. Soshnikova
- Institute of Gene Biology, RAS, Department of Eukariotic Transcription Factors
| |
Collapse
|
7
|
Tatarskiy VV, Simonov YP, Shcherbinin DS, Brechalov AV, Georgieva SG, Soshnikova NV. Stability of the PHF10 subunit of PBAF signature module is regulated by phosphorylation: role of β-TrCP. Sci Rep 2017; 7:5645. [PMID: 28717195 PMCID: PMC5514133 DOI: 10.1038/s41598-017-05944-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
The PBAF chromatin-remodeling complexes are multi-protein machines, regulating expression of genes involved in proliferation and differentiation. PHF10 is a subunit of the PBAF essential for its association with chromatin. Mammalian PHF10 is expressed as four ubiquitous isoforms, which are alternatively incorporated in the complex and differ by their influence on transcription of target genes. PHF10 have different domain structure and two of them (PHF10-S isoforms) lack C-terminal PHD domains, which enables their phosphorylation by CK-1. Here we have found that PBAF subunits have low turnover rate, except for PHF10 which has much lower half-life, and is degraded by β-TrCP. The β-TrCP knockdown stabilizes PBAF core subunits - BRG1 and BAF155 and specific subunits - PHF10, BAF200, BAF180 and BRD7. PHF10 isoforms contain two non-canonical β-TrCP degrons and are degraded by β-TrCP in a phospho-dependent manner. But phosphorylation of PHF10-S degrons by CK-1, contrary to previously described degrons, prevents their degradation. Targeted molecular docking demonstrated that phosphorylated forms of PHF10 bind to β-TrCP with much lower affinity than non-phosphorylated ones, contrary to previously described degrons. This unorthodox mechanism proposes that phosphorylation of β-TrCP degrons by CK-1 could not only degrade a set of proteins, but also stabilize a different set of targets.
Collapse
Affiliation(s)
- Victor V Tatarskiy
- Laboratory of Tumor Cell Death, N.N. Blokhin Russian Cancer Research Center, Kashirskoye Shosse 24, Moscow, 115478, Russia
| | - Yuriy P Simonov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia
| | - Dmitrii S Shcherbinin
- Laboratory of Structure Bioinformatics, Institute of Biomedical Chemistry (IBMC), Pogodinskaya street 10 building 8, Moscow, 119121, Russia
| | - Alexander V Brechalov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia
| | - Sofia G Georgieva
- Department of Eukariotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow, 119991, Russia. .,Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia.
| | - Nataliya V Soshnikova
- Department of Eukariotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow, 119991, Russia.
| |
Collapse
|