1
|
Singh B, Cui K, Eisa-Beygi S, Zhu B, Cowan DB, Shi J, Wang DZ, Liu Z, Bischoff J, Chen H. Elucidating the crosstalk between endothelial-to-mesenchymal transition (EndoMT) and endothelial autophagy in the pathogenesis of atherosclerosis. Vascul Pharmacol 2024; 155:107368. [PMID: 38548093 PMCID: PMC11303600 DOI: 10.1016/j.vph.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Atherosclerosis, a chronic systemic inflammatory condition, is implicated in most cardiovascular ischemic events. The pathophysiology of atherosclerosis involves various cell types and associated processes, including endothelial cell activation, monocyte recruitment, smooth muscle cell migration, involvement of macrophages and foam cells, and instability of the extracellular matrix. The process of endothelial-to-mesenchymal transition (EndoMT) has recently emerged as a pivotal process in mediating vascular inflammation associated with atherosclerosis. This transition occurs gradually, with a significant portion of endothelial cells adopting an intermediate state, characterized by a partial loss of endothelial-specific gene expression and the acquisition of "mesenchymal" traits. Consequently, this shift disrupts endothelial cell junctions, increases vascular permeability, and exacerbates inflammation, creating a self-perpetuating cycle that drives atherosclerotic progression. While endothelial cell dysfunction initiates the development of atherosclerosis, autophagy, a cellular catabolic process designed to safeguard cells by recycling intracellular molecules, is believed to exert a significant role in plaque development. Identifying the pathological mechanisms and molecular mediators of EndoMT underpinning endothelial autophagy, may be of clinical relevance. Here, we offer new insights into the underlying biology of atherosclerosis and present potential molecular mechanisms of atherosclerotic resistance and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Bandana Singh
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Douglas B Cowan
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jinjun Shi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine, University of South Florida Health Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhenguo Liu
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Joyce Bischoff
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Jarych D, Mikulski D, Wilczyński M, Wilczyński JR, Kania KD, Haręża D, Malinowski A, Perdas E, Nowak M, Paradowska E. Differential microRNA Expression Analysis in Patients with HPV-Infected Ovarian Neoplasms. Int J Mol Sci 2024; 25:762. [PMID: 38255835 PMCID: PMC10815566 DOI: 10.3390/ijms25020762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to identify microRNAs (miRNAs) whose expression levels are altered by high-risk human papillomavirus (HR-HPV) infection in women with epithelial ovarian neoplasms. MiRNA expression was quantified by real-time polymerase chain reaction, while HR-HPV DNA was quantified using digital-droplet PCR. Analysis of 11 miRNAs demonstrated significantly lower hsa-miR-25-5p expression in HPV-infected compared to uninfected ovarian tissues (p = 0.0405), while differences in miRNA expression in corresponding serum were statistically insignificant. The expression of hsa-miR-218-5p in ovarian tumors was significantly higher in high-grade serous ovarian carcinoma (HGSOC) cases than in other neoplasms (p = 0.0166). In addition, hsa-miR-218-5p was significantly upregulated, whereas hsa-miR-191-5p was significantly downregulated in tissues with stage III/IV FIGO (p = 0.0009 and p = 0.0305, respectively). Using unsupervised clustering, we identified three unique patient groups with significantly varied frequencies of HPV16/18-positive samples and varied miRNA expression profiles. In multivariate analysis, high expression of hsa-miR-16-5p was an independent prognostic factor for poor overall survival (p = 0.0068). This preliminary analysis showed the changes in miRNA expression in ovarian neoplasms during HPV infection and those collected from HGSOCs or patients with advanced disease. This prospective study can provide new insights into the pathogenesis of ovarian neoplasms and host-virus interactions.
Collapse
Affiliation(s)
- Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| | - Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (E.P.)
| | - Miłosz Wilczyński
- Department of Surgical, Endoscopic and Oncological Gynecology, Institute of the Polish Mother’s Health Center, 93-338 Lodz, Poland; (M.W.); (A.M.)
| | - Jacek R. Wilczyński
- Department of Surgical and Oncological Gynecology, Medical University of Lodz, 90-419 Lodz, Poland;
- Department of Gynecology and Obstetrics, Tomaszow Health Center, 97-200 Tomaszow Mazowiecki, Poland;
| | - Katarzyna D. Kania
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| | - Daria Haręża
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
- Bio-Med-Chem Doctoral School of University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-136 Lodz, Poland
| | - Andrzej Malinowski
- Department of Surgical, Endoscopic and Oncological Gynecology, Institute of the Polish Mother’s Health Center, 93-338 Lodz, Poland; (M.W.); (A.M.)
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (D.M.); (E.P.)
| | - Mateusz Nowak
- Department of Gynecology and Obstetrics, Tomaszow Health Center, 97-200 Tomaszow Mazowiecki, Poland;
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (D.J.); (K.D.K.); (D.H.)
| |
Collapse
|
3
|
Qian C, Liu Q. FOXO3a inhibits nephroblastoma cell proliferation, migration and invasion, and induces apoptosis through downregulating the Wnt/β‑catenin signaling pathway. Mol Med Rep 2021; 24:796. [PMID: 34515328 PMCID: PMC8446726 DOI: 10.3892/mmr.2021.12436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Forkhead transcription factor O subfamily 3A (FOXO3a) is an important tumor suppressor gene that is expressed in renal tissue and has been reported to be downregulated in clear cell renal cell carcinoma (CCRCC). Notably, the overexpression of FOXO3a was previously discovered to inhibit the progression of CCRCC. However, the expression levels of FOXO3a in nephroblastoma cell lines remain unknown. The present study aimed to investigate the expression levels of FOXO3a in nephroblastoma cell lines and to determine the mechanism of action of the biological functions of FOXO3a. Western blotting and reverse transcription‑quantitative PCR were used to analyze the expression levels of FOXO3a in nephroblastoma cell lines. Subsequently, the effects of the overexpression of FOXO3a and the genetic knockdown of the Wnt/β‑catenin signaling protein Axin‑2 on the biological functions were determined through Cell Counting Kit‑8, cell colony formation assays, scratch and Transwell assay and flow cytometric analysis experiments. The expression levels of FOXO3a were discovered to be downregulated in nephroblastoma cell lines. The overexpression of FOXO3a inhibited the proliferation, invasion and migration of nephroblastoma cells, while inducing apoptosis. Furthermore, the overexpression of FOXO3a downregulated the expression levels of β‑catenin and Cyclin‑D1 proteins involved in the Wnt/β‑catenin signaling pathway. Cell proliferation and the migration and invasion ability of 17‑94 cells in shRNA‑Axin2‑2 group were promoted. Cell apoptosis was predominantly increased by overexpressed FOXO3a, which was reversed by shRNA‑Axin2‑1. The biological effects of overexpressing FOXO3a on nephroblastoma were reversed after activation of Wnt/β‑catenin. In conclusion, the findings of the present study suggested that FOXO3a may inhibit nephroblastoma cell proliferation, migration and invasion, while inducing apoptosis, by downregulating the Wnt/β‑catenin signaling pathway. These results may provide a novel method for the early diagnosis and precise treatment of nephroblastoma.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pediatric Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| | - Qiang Liu
- Department of Urinary Surgery, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| |
Collapse
|