1
|
Wang PX, Wu SL, Ju JQ, Jiao L, Zou YJ, Zhang KH, Sun SC, Hu LL, Zheng XB. Benzo[a]pyrene exposure disrupts the organelle distribution and function of mouse oocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116630. [PMID: 38917590 DOI: 10.1016/j.ecoenv.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon compound that is generated during combustion processes, and is present in various substances such as foods, tobacco smoke, and burning emissions. BaP is extensively acknowledged as a highly carcinogenic substance to induce multiple forms of cancer, such as lung cancer, skin cancer, and stomach cancer. Recently it is shown to adversely affect the reproductive system. Nevertheless, the potential toxicity of BaP on oocyte quality remains unclear. In this study, we established a BaP exposure model via mouse oral gavage and found that BaP exposure resulted in a notable decrease in the ovarian weight, number of GV oocytes in ovarian, and oocyte maturation competence. BaP exposure caused ribosomal dysfunction, characterized by a decrease in the expression of RPS3 and HPG in oocytes. BaP exposure also caused abnormal distribution of the endoplasmic reticulum (ER) and induced ER stress, as indicated by increased expression of GRP78. Besides, the Golgi apparatus exhibited an abnormal localization pattern, which was confirmed by the GM130 localization. Disruption of vesicle transport processes was observed by the abnormal expression and localization of Rab10. Additionally, an enhanced lysosome and LC3 fluorescence intensity indicated the occurrence of protein degradation in oocytes. In summary, our results suggested that BaP exposure disrupted the distribution and functioning of organelles, consequently affecting the developmental competence of mouse oocytes.
Collapse
Affiliation(s)
- Peng-Xia Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning 530004, China
| | - Si-Le Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Jiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan-Jing Zou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun-Huan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Xi-Bang Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Teng F, Fu D, Shi CC, Xiong A, Yang MX, Su C, Lei M, Cao YO, Shen XD, Chen Y, Wang PH, Liu SQ. Nano-energy interference: A novel strategy for blunting tumor adaptation and metastasis. Mater Today Bio 2024; 25:100984. [PMID: 38356962 PMCID: PMC10865032 DOI: 10.1016/j.mtbio.2024.100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Blunting the tumor's stress-sensing ability is an effective strategy for controlling tumor adaptive survival and metastasis. Here, we have designed a cyclically amplified nano-energy interference device based on lipid nanoparticles (LNP), focused on altering cellular energy metabolism. This innovative nano device efficiently targets and monitors the tumor's status while simultaneously inhibiting mitochondrial respiration, biogenesis and ribosome production. To this end, we first identified azelaic acid (AA), a binary acid capable of disrupting the mitochondrial respiratory chain. Upon encapsulation in LNP and linkage to mitochondrial-targeting molecules, this disruptive effect is further augmented. Consequently, tumors exhibit a substantial upregulation of the glycolytic pathway, intensifying their glucose demand and worsening the tumor's energy-deprived microenvironment. Then, the glucose analog, 2-Deoxy-D-glucose (2-DG), linked to the LNP, efficiently targets tumors and competitively inhibits the tumor's normal glucose uptake. The synergetic results of combining AA with 2-DG induce comprehensive energy deficiency within tumors, blocking the generation of energy-sensitive ribosomes. Ultimately, the disruption of both mitochondria and ribosomes depletes energy supply and new protein-generating capacity, weakening tumor's ability to adapt to environmental stress and thereby inhibiting growth and metastasis. Comprehensively, this nano-energy interference device, by controlling the tumor's stress-sensing ability, provides a novel therapeutic strategy for refractory tumors.
Collapse
Affiliation(s)
- Fei Teng
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Dong Fu
- Department of Pediatric Orthopedics, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, PR China
| | - Chen-Cheng Shi
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - An Xiong
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Meng-Xuan Yang
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Chang Su
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Ming Lei
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Yi-Ou Cao
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Xiao-Dong Shen
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Yi Chen
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Pu-Hua Wang
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| | - Shao-Qun Liu
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, 201199, PR China
| |
Collapse
|
3
|
Zolotenkova EA, Gopanenko AV, Tupikin AE, Kabilov MR, Malygin AA. Mutation at the Site of Hydroxylation in the Ribosomal Protein uL15 (RPL27a) Causes Specific Changes in the Repertoire of mRNAs Translated in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24076173. [PMID: 37047141 PMCID: PMC10094517 DOI: 10.3390/ijms24076173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Ribosomal protein uL15 (RPL27a) carries a specific modification, hydroxylation, at the His39 residue, which neighbors the CCA terminus of the E-site-bound tRNA at the mammalian ribosome. Under hypoxia, the level of hydroxylation of this protein decreases. We transiently transfected HEK293T cells with constructs expressing wild-type uL15 or mutated uL15 (His39Ala) incapable of hydroxylation, and demonstrated that ribosomes containing both proteins are competent in translation. By applying RNA-seq to the total cellular and polysome-associated mRNAs, we identified differentially expressed genes (DEGs) in cells containing exogenous uL15 or its mutant form. Analyzing mRNA features of up- and down-regulated DEGs, we found an increase in the level of more abundant mRNAs and shorter CDSs in cells with uL15 mutant for both translated and total cellular mRNAs. The level of longer and rarer mRNAs, on the contrary, decreased. Our data show how ribosome heterogeneity can change the composition of the translatome and transcriptome, depending on the properties of the translated mRNAs.
Collapse
Affiliation(s)
- Elizaveta A Zolotenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander V Gopanenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Sosorev AY. Modeling of Electron Hole Transport within a Small Ribosomal Subunit. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract—
Synchronized operation of various parts of the ribosome during protein synthesis implies the presence of a coordinating pathway, however, this is still unknown. We have recently suggested that such a pathway can be based on charge transport along the transfer and ribosomal RNA molecules and localization of the charges in functionally important areas of the ribosome. In the current study, using density functional theory calculations, we show that charge carriers (electron holes) can efficiently migrate within the central element of the small ribosomal subunit—the h44 helix. Monte-Carlo modeling revealed that electron holes tend to localize in the functionally important areas of the h44 helix, near the decoding center and intersubunit bridges. On the basis of the results obtained, we suggest that charge transport and localization within the h44 helix could coordinate intersubunit ratcheting with other processes occurring during protein synthesis.
Collapse
|
5
|
Walking around Ribosomal Small Subunit: A Possible "Tourist Map" for Electron Holes. Molecules 2021; 26:molecules26185479. [PMID: 34576950 PMCID: PMC8467113 DOI: 10.3390/molecules26185479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Despite several decades of research, the physics underlying translation-protein synthesis at the ribosome-remains poorly studied. For instance, the mechanism coordinating various events occurring in distant parts of the ribosome is unknown. Very recently, we suggested that this allosteric mechanism could be based on the transport of electric charges (electron holes) along RNA molecules and localization of these charges in the functionally important areas; this assumption was justified using tRNA as an example. In this study, we turn to the ribosome and show computationally that holes can also efficiently migrate within the whole ribosomal small subunit (SSU). The potential sites of charge localization in SSU are revealed, and it is shown that most of them are located in the functionally important areas of the ribosome-intersubunit bridges, Fe4S4 cluster, and the pivot linking the SSU head to its body. As a result, we suppose that hole localization within the SSU can affect intersubunit rotation (ratcheting) and SSU head swiveling, in agreement with the scenario of electronic coordination of ribosome operation. We anticipate that our findings will improve the understanding of the translation process and advance molecular biology and medicine.
Collapse
|
8
|
Sosorev A, Kharlanov O. Organic nanoelectronics inside us: charge transport and localization in RNA could orchestrate ribosome operation. Phys Chem Chem Phys 2021; 23:7037-7047. [PMID: 33448272 DOI: 10.1039/d0cp04970k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Translation - protein synthesis at the ribonucleic acid (RNA) based molecular machine, the ribosome, - proceeds in a similar manner in all life forms. However, despite several decades of research, the physics underlying this process remains enigmatic. Specifically, during translation, a ribosome undergoes large-scale conformational changes of its distant parts, and these motions are coordinated by an unknown mechanism. In this study, we suggest that such a mechanism could be related to charge (electron hole) transport along and between the RNA molecules, localization of these charges at certain sites and successive relaxation of the molecular geometry. Thus, we suppose that RNA-based molecular machines, e.g., the ribosome, could be electronically controlled, having "wires", "actuators", "a battery", and other "circuitry". Taking transfer RNA as an example, we justify the reasonability of our suggestion using ab initio and atomistic simulations. Specifically, very large hole transfer integrals between the nucleotides (up to above 100 meV) are observed so that the hole can migrate over nearly the whole tRNA molecule. Hole localization at several guanines located at functionally important sites (G27, G10, G34 and G63) is predicted, which is shown to induce geometry changes in these sites, their neighborhoods and even rather distant moieties. If our hypothesis is right, we anticipate that our findings will qualitatively advance the understanding of the key biological processes and could inspire novel approaches in medicine.
Collapse
Affiliation(s)
- Andrey Sosorev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, GSP-7, 117997, Russia.
| | | |
Collapse
|