1
|
Pompeo JN, Gatto KP, Baldo D, Lourenço LB. Evidence for the Transcription of a Satellite DNA Widely Found in Frogs. Genes (Basel) 2024; 15:1572. [PMID: 39766839 PMCID: PMC11675491 DOI: 10.3390/genes15121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The satellite DNA (satDNA) PcP190 has been identified in multiple frog species from seven phylogenetically distant families within Hyloidea, indicating its broad distribution. This satDNA consists of repeats of approximately 190 bp and exhibits a highly conserved region (CR) of 120 bp, which is similar to the transcribed region of 5S ribosomal DNA (rDNA), and a hypervariable region (HR) that varies in size and nucleotide composition among and within species. Here, to improve our understanding of PcP190 satDNA, we searched for evidence of its transcription in the available transcriptomes of Rhinella marina (Bufonidae) and Engystomops pustulosus (Leptodactylidae), two phylogenetically distantly related species. METHODS We first characterized the 5S rDNA and PcP190 sequences in these species by searching for them in available genome assemblies. Next, we used the PcP190 (CR and HR) and 5S rDNA sequences of each species as queries to search for these sequences in RNA-seq libraries. RESULTS We identified two types of 5S rDNA in each analyzed species, with a new type found in E. pustulosus. Our results also revealed a novel type of PcP190 sequence in R. marina and a new subtype of PcP-1 in E. pustulosus. Transcriptome analyses confirmed the expected transcription of the 5S rRNA gene and showed transcription of both the CR and HR of the PcP190 satDNA in both species and in different tissues. CONCLUSIONS As the entire repeat of this satDNA is susceptible to transcription, the high variability observed in the HR cannot be attributed to transcriptional activity confined to the CR.
Collapse
Affiliation(s)
- Jennifer Nunes Pompeo
- Laboratório de Estudos Cromossômicos, Instituto de Biologia, Universidade de Campinas, Campinas 13083-862, SP, Brazil;
| | - Kaleb Pretto Gatto
- Laboratório de Citogenética Evolutiva e Conservação Animal, Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba 81531-980, PR, Brazil;
| | - Diego Baldo
- Laboratorio de Genética Evolutiva “Claudio Juan Bidau”, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas N3300LQF, Misiones, Argentina;
| | - Luciana Bolsoni Lourenço
- Laboratório de Estudos Cromossômicos, Instituto de Biologia, Universidade de Campinas, Campinas 13083-862, SP, Brazil;
| |
Collapse
|
2
|
Félix AP, Amorim ICD, Milani D, Cabral-de-Mello DC, Moura RC. Differential amplification and contraction of satellite DNAs in the distinct lineages of the beetle Euchroma gigantea. Gene 2024; 927:148723. [PMID: 38914242 DOI: 10.1016/j.gene.2024.148723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Satellite DNA (satDNA) consists of tandem repeat sequences that typically evolve rapidly through evolutionary mechanisms, including unequal crossover, transposition events, and others. The evolutionary history of Euchroma gigantea is marked by complex chromosomal evolution between lineages, making this species an interesting model for understanding satDNA evolution at intraspecies level. Therefore, our aim was to comprehend the potential contribution of satDNAs to the greater chromosomal differentiation of evolutionary lineages in E. gigantea by investigating the differential patterns of amplification and contraction of the repeats. To achieve this, we employed de novo identification of satDNA using RepeatExplorer and TAREAN, allowing the satellitome characterization between lineages. A total of 26 satDNA families were identified, ranging from 18 to 1101 nucleotides in length, with most families being shared between individuals/lineages, as predicted by the library hypothesis, except for the satDNA EgiSat21-168 that was absent for Northeast Lineage. The total satDNA content of the individuals was less than 11.2%, and it appeared to increase in two directions following the chromosomal evolution model. Thirteen satDNAs exhibited different patterns of amplification, and nine ones were contracted among individuals. Additionally, most repeats showed a divergence of about 10% for these satDNAs, indicating satellitome differentiation for each lineage/individual. This scenario suggests that the expansion of the satellitome occurred differentially among individuals/lineages of E. gigantea, with the contribution of various DNA turnover mechanisms after geographical isolation, and that they could be involved with karyotype evolution.
Collapse
Affiliation(s)
- Aline Priscila Félix
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Igor Costa de Amorim
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, Juazeiro, Bahia, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Rita Cássia Moura
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
3
|
Ponomartsev N, Zilov D, Gushcha E, Travina A, Sergeev A, Enukashvily N. Overexpression of Pericentromeric HSAT2 DNA Increases Expression of EMT Markers in Human Epithelial Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24086918. [PMID: 37108080 PMCID: PMC10138405 DOI: 10.3390/ijms24086918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Pericentromeric tandemly repeated DNA of human satellites 1, 2, and 3 (HS1, HS2, and HS3) is actively transcribed in some cells. However, the functionality of the transcription remains obscure. Studies in this area have been hampered by the absence of a gapless genome assembly. The aim of our study was to map a transcript that we have previously described as HS2/HS3 on chromosomes using a newly published gapless genome assembly T2T-CHM13, and create a plasmid overexpressing the transcript to assess the influence of HS2/HS3 transcription on cancer cells. We report here that the sequence of the transcript is tandemly repeated on nine chromosomes (1, 2, 7, 9, 10, 16, 17, 22, and Y). A detailed analysis of its genomic localization and annotation in the T2T-CHM13 assembly revealed that the sequence belonged to HSAT2 (HS2) but not to the HS3 family of tandemly repeated DNA. The transcript was found on both strands of HSAT2 arrays. The overexpression of the HSAT2 transcript increased the transcription of the genes encoding the proteins involved in the epithelial-to-mesenchymal transition, EMT (SNAI1, ZEB1, and SNAI2), and the genes that mark cancer-associated fibroblasts (VIM, COL1A1, COL11A1, and ACTA2) in cancer cell lines A549 and HeLa. Co-transfection of the overexpression plasmid and antisense nucleotides eliminated the transcription of EMT genes observed after HSAT2 overexpression. Antisense oligonucleotides also decreased transcription of the EMT genes induced by tumor growth factor beta 1 (TGFβ1). Thus, our study suggests HSAT2 lncRNA transcribed from the pericentromeric tandemly repeated DNA is involved in EMT regulation in cancer cells.
Collapse
Affiliation(s)
- Nikita Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Danil Zilov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg 191002, Russia
| | - Ekaterina Gushcha
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexandra Travina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexander Sergeev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Natella Enukashvily
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
4
|
Lopes M, Louzada S, Ferreira D, Veríssimo G, Eleutério D, Gama-Carvalho M, Chaves R. Human Satellite 1A analysis provides evidence of pericentromeric transcription. BMC Biol 2023; 21:28. [PMID: 36755311 PMCID: PMC9909926 DOI: 10.1186/s12915-023-01521-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Pericentromeric regions of human chromosomes are composed of tandem-repeated and highly organized sequences named satellite DNAs. Human classical satellite DNAs are classified into three families named HSat1, HSat2, and HSat3, which have historically posed a challenge for the assembly of the human reference genome where they are misrepresented due to their repetitive nature. Although being known for a long time as the most AT-rich fraction of the human genome, classical satellite HSat1A has been disregarded in genomic and transcriptional studies, falling behind other human satellites in terms of functional knowledge. Here, we aim to characterize and provide an understanding on the biological relevance of HSat1A. RESULTS The path followed herein trails with HSat1A isolation and cloning, followed by in silico analysis. Monomer copy number and expression data was obtained in a wide variety of human cell lines, with greatly varying profiles in tumoral/non-tumoral samples. HSat1A was mapped in human chromosomes and applied in in situ transcriptional assays. Additionally, it was possible to observe the nuclear organization of HSat1A transcripts and further characterize them by 3' RACE-Seq. Size-varying polyadenylated HSat1A transcripts were detected, which possibly accounts for the intricate regulation of alternative polyadenylation. CONCLUSION As far as we know, this work pioneers HSat1A transcription studies. With the emergence of new human genome assemblies, acrocentric pericentromeres are becoming relevant characters in disease and other biological contexts. HSat1A sequences and associated noncoding RNAs will most certainly prove significant in the future of HSat research.
Collapse
Affiliation(s)
- Mariana Lopes
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Sandra Louzada
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniela Ferreira
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Gabriela Veríssimo
- grid.12341.350000000121821287CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal ,grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Daniel Eleutério
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- grid.9983.b0000 0001 2181 4263BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab, Department of Genetics and Biotechnology (DGB), University of Trás-Os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal. .,BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
5
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Genomic Tackling of Human Satellite DNA: Breaking Barriers through Time. Int J Mol Sci 2021; 22:4707. [PMID: 33946766 PMCID: PMC8125562 DOI: 10.3390/ijms22094707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.
Collapse
Affiliation(s)
- Mariana Lopes
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Sandra Louzada
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Margarida Gama-Carvalho
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (M.L.); (S.L.)
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| |
Collapse
|
6
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
7
|
Vozdova M, Kubickova S, Martínková N, Galindo DJ, Bernegossi AM, Cernohorska H, Kadlcikova D, Musilová P, Duarte JM, Rubes J. Satellite DNA in Neotropical Deer Species. Genes (Basel) 2021; 12:genes12010123. [PMID: 33478071 PMCID: PMC7835801 DOI: 10.3390/genes12010123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/04/2023] Open
Abstract
The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
- Correspondence: ; Tel.: +4205-3333-1422
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Natália Martínková
- Institute of Vertebrate Biology, Czech Academy of Sciences, Kvetna 8, 603 65 Brno, Czech Republic;
| | - David Javier Galindo
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Agda Maria Bernegossi
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Halina Cernohorska
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Dita Kadlcikova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Petra Musilová
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| | - Jose Mauricio Duarte
- Deer Research and Conservation Center (NUPECCE), School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), 14884-900 Jaboticabal, Brazil; (D.J.G.); (A.M.B.); (J.M.D.)
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic; (S.K.); (H.C.); (D.K.); (P.M.); (J.R.)
| |
Collapse
|