1
|
Jia Y, Zhang K. A direct one-step synthesis of a smart graphene/silica nanocomposite and its application for improving the acid resistance and corrosion resistance properties of waterborne epoxy coatings. RSC Adv 2024; 14:11758-11770. [PMID: 38623295 PMCID: PMC11016887 DOI: 10.1039/d4ra00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
Graphene has attracted tremendous attention as a potential building block of modern high performance coating systems. Herein, we demonstrate a green method for making reduced oxide graphene (rGO) using the natural product rutin as the reducing agent. The rGO, with residual rutin on the surface to provide surface affinity, is used in the one-step fabrication of a nanocomposite of rGO and silica nanoparticles (SN) with a corrosion inhibitor, benzotriazole (BTA), loaded in situ. The ternary nanocomposite, BTA@SN-rGO, can be easily dispersed in water. It not only has a high inhibitor loading capacity (85.1 μg mg-1) but also can release the inhibitor in a controlled manner triggered by pH. Combining both the extraordinarily good barrier properties and smart nanocontainer features, BTA@SN-rGO was further incorporated into an epoxy latex to assemble an intelligent anticorrosion coating. The effective duration of the coating protection for steel was remarkably prolonged in different media, especially in acidic media. In addition to the barrier capability, smart self-healing of artificial damage to the modified coating films is also shown. Electrochemical impedance spectroscopy (EIS) was applied to monitor the failure process of different kinds of coatings. All the results confirm the synergy of the passive and active functions of the BTA@SN-rGO coating.
Collapse
Affiliation(s)
- Yanling Jia
- College of Advanced Materials Engineering, Jiaxing Nanhu University Jiaxing 314000 China
| | - Ke Zhang
- Beijing Institute of Technology Beijing 100081 China
- Yangtze Delta Region Academy of Beijing Institute of Technology Jiaxing 314000 China
| |
Collapse
|
2
|
Shishmakova EM, Ivchenko AV, Bolshakova AV, Staltsov MS, Urodkova EK, Grammatikova NE, Rudoy VM, Dement’eva OV. Antibacterial Bionanocomposites Based on Drug-Templated Bifunctional Mesoporous Silica Nanocontainers. Pharmaceutics 2023; 15:2675. [PMID: 38140016 PMCID: PMC10748164 DOI: 10.3390/pharmaceutics15122675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
The creation of antibacterial nanocomposites that provide prolonged release of encapsulated drugs is of great interest for various fields of medicine (dentistry, tissue regeneration, etc.). This article demonstrates the possibility of creating such nanocomposites based on sodium alginate and drug-templated mesoporous silica nanocontainers (MSNs) loaded with two bioactive substances. Herein, we thoroughly study all stages of the process, starting with the synthesis of MSNs using antiseptic micelles containing the hydrophobic drug quercetin and ending with assessing the activity of the resulting composites against various microorganisms. The main emphasis is on studying the quercetin solubilization in antiseptic micelles as well as establishing the relationship between the conditions of MSN synthesis and micelle morphology and capacity. The effect of medium pH on the release rate of encapsulated drugs is also evaluated. It was shown that the MSNs contained large amounts of encapsulated drugs and that the rate of drug unloading depended on the medium pH. The incorporation of such MSNs into the alginate matrix allowed for a prolonged release of the drugs.
Collapse
Affiliation(s)
- Elena M. Shishmakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.I.); (A.V.B.); (E.K.U.); (V.M.R.)
| | - Anastasia V. Ivchenko
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.I.); (A.V.B.); (E.K.U.); (V.M.R.)
| | - Anastasia V. Bolshakova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.I.); (A.V.B.); (E.K.U.); (V.M.R.)
- Department of Chemistry, Moscow State University, 119992 Moscow, Russia
| | - Maxim S. Staltsov
- Division of Nuclear Physics and Technologies, National Research Nuclear University MEPHI, 115409 Moscow, Russia;
| | - Ekaterina K. Urodkova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.I.); (A.V.B.); (E.K.U.); (V.M.R.)
| | | | - Victor M. Rudoy
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.I.); (A.V.B.); (E.K.U.); (V.M.R.)
| | - Olga V. Dement’eva
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.I.); (A.V.B.); (E.K.U.); (V.M.R.)
| |
Collapse
|
3
|
Dement’eva OV, Naumova KA, Shishmakova EM, Senchikhin IN, Zhigletsova SK, Klykova MV, Dunaitsev IA, Kozlov DA, Rudoy VM. Synthesis of Bifunctional Silica Container Particles on Antiseptic Micelles with Solubilized Curcumin and Assessment of Their Biological Activity. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x21060028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Abu-Dief A, Alsehli M, Al-Enizi A, Nafady A. Recent Advances in Mesoporous Silica Nanoparticles for Targeted Drug Delivery applications. Curr Drug Deliv 2021; 19:436-450. [PMID: 34238185 DOI: 10.2174/1567201818666210708123007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
Nanotechnology provides the means to design and fabricate delivery vehicles capable of overcoming physiologically imposed obstacles and undesirable side effects of systemic drug delivery. This protocol allows maximal targeting effectiveness and therefore enhances therapeutic efficiency. In recent years, mesoporous silica nanoparticles (MSNPs) have sparked interest in the nanomedicine research community, particularly for their promising applications in cancer treatment. The intrinsic physio-chemical stability, facile functionalization, high surface area, low toxicity, and great loading capacity for a wide range of chemotherapeutic agents make MSNPs very appealing candidates for controllable drug delivery systems. Importantly, the peculiar nanostructures of MSNPs enabled them to serve as an effective drug, gene, protein, and antigen delivery vehicle for a variety of therapeutic regimens. For these reasons, in this review article, we underscore the recent progress in the design and synthesis of MSNPs and the parameters influencing their characteristic features and activities. In addition, the process of absorption, dissemination, and secretion by injection or oral management of MSNPs are also discussed, as they are key directions for the potential utilization of MSNPs. Factors influencing the in vivo fate of MSNPs will also be highlighted, with the main focus on particle size, morphology, porosity, surface functionality, and oxidation. Given that combining other functional materials with MSNPs may increase their biological compatibility, monitor drug discharge, or improve absorption by tumor cells coated MSNPs; these aspects are also covered and discussed herein.
Collapse
Affiliation(s)
- Ahmed Abu-Dief
- Chemistry Department, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Mosa Alsehli
- Chemistry Department, Faculty of Science, Taibah University, Madinah, Saudi Arabia
| | - Abdullah Al-Enizi
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman Nafady
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021; 13:pharmaceutics13070950. [PMID: 34202794 PMCID: PMC8309060 DOI: 10.3390/pharmaceutics13070950] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field.
Collapse
|
6
|
Pandita D, Munjal A, Poonia N, Awasthi R, Kalonia H, Lather V. Albumin-Coated Mesoporous Silica Nanoparticles of Docetaxel: Preparation, Characterization, and Pharmacokinetic Evaluation. Assay Drug Dev Technol 2021; 19:226-236. [PMID: 33891509 DOI: 10.1089/adt.2020.1039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The potential of albumin-coated hollow mesoporous silica nanoparticles (A-HMSNs) to optimize the chemotherapeutic efficacy of docetaxel (DTX) was explored. The synthesized A-DTX-HMSNs had a nanometric size range, offered large surface area with numerous pores, and offered high drug entrapment and loading, that is, 79.18% ± 1.4% and 19.11% ± 1.30%, respectively. Fourier transform infrared spectroscopy and differential scanning calorimetry studies confirmed drug loading and the presence of albumin onto the developed systems, and the drug release followed Higuchi profile. A-HMSNs significantly enhanced the pharmacokinetic profile of DTX by eightfold vis-à-vis the pure DTX. The enhanced plasma levels (Cmax, Tmax, area under the curve), prolonged drug release, long circulation time, lower clearance, hemocompatability, and substantially higher drug loading offered by these nanocarriers inherit promise of a safer and efficacious formulation of DTX.
Collapse
Affiliation(s)
- Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences & Research, Delhi Pharmaceutical Sciences & Research University, Government of NCT of Delhi, New Delhi, India
| | - Aman Munjal
- Department of Pharmaceutics, Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa, Haryana, India
| | - Neelam Poonia
- Department of Pharmaceutics, Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa, Haryana, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Harikesh Kalonia
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Viney Lather
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Dement’eva OV. Mesoporous Silica Container Particles: New Approaches and New Opportunities. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20050038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Dement'eva OV, Naumova KA, Zhigletsova SK, Klykova MV, Somov AN, Dunaytsev IA, Senchikhin IN, Volkov VV, Rudoy VM. Drug-templated mesoporous silica nanocontainers with extra high payload and controlled release rate. Colloids Surf B Biointerfaces 2019; 185:110577. [PMID: 31675641 DOI: 10.1016/j.colsurfb.2019.110577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022]
Abstract
The possibility of one-step creating of pH-sensitive mesostructured silica-based nanocontainers with exceptionally high payload using associates of two antiseptics (including hydrolyzable one) as templates is demonstrated. The effects of the template nature and the conditions of the sol-gel process on the porous structure of silica nanocontainers are studied and discussed. The kinetics of the templating drug release from such containers is studied and some features of this process are analyzed. It is shown that the drug release rate can be tuned by varying the medium pH. The bactericidal activity of two encapsulated antiseptics against the Staphylococcus aureus is evaluated in vitro by agar diffusion method with replacement of agar with agarose. The diameters of the inhibition zones for silica-based containers loaded with antiseptics increased with the pre-diffusion time at 4 °C. At the same time, empty containers (after elimination of antiseptics by etching) did not reveal any bactericidal properties.
Collapse
Affiliation(s)
- O V Dement'eva
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| | - K A Naumova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia; Department of Chemistry, Lomonosov Moscow State University, Russia
| | - S K Zhigletsova
- State Research Center for Applied Microbiology & Biotechnology, Obolensk, Russia
| | - M V Klykova
- State Research Center for Applied Microbiology & Biotechnology, Obolensk, Russia
| | - A N Somov
- State Research Center for Applied Microbiology & Biotechnology, Obolensk, Russia
| | - I A Dunaytsev
- State Research Center for Applied Microbiology & Biotechnology, Obolensk, Russia
| | - I N Senchikhin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - V V Volkov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| | - V M Rudoy
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Naumova KA, Dement’eva OV, Zaitseva AV, Rudoy VM. Solubilization as a Method for Creating Hybrid Micellar Templates for the Synthesis of Multifunctional Mesoporous Containers. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19040094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv 2019; 16:219-237. [DOI: 10.1080/17425247.2019.1575806] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Dubovoy V, Ganti A, Zhang T, Al-Tameemi H, Cerezo JD, Boyd JM, Asefa T. One-Pot Hydrothermal Synthesis of Benzalkonium-Templated Mesostructured Silica Antibacterial Agents. J Am Chem Soc 2018; 140:13534-13537. [PMID: 30260224 DOI: 10.1021/jacs.8b04843] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel mesostructured silica microparticles are synthesized, characterized, and investigated as a drug delivery system (DDS) for antimicrobial applications. The materials exhibit a relatively high density (0.56 g per 1 g SiO2) of benzalkonium chloride (BAC), pore channels of 18 Å in width, and a high surface area (1500 m2/g). Comparison of the small-angle X-ray diffraction (SAXRD) pattern with Barrett-Joyner-Halenda (BJH) pore size distribution data suggests that the 18 Å pores exhibit short-range ordering and a wall thickness of ca. 12 Å. Drug release studies demonstrate pH-responsive controlled release of BAC without additional surface modification of the materials. Prolonged drug release data were analyzed using a power law (Korsmeyer-Peppas) model and indicate substantial differences in release mechanism in acidic (pH 4.0, 5.0, 6.5) versus neutral (pH 7.4) solutions. Microbiological assays demonstrate a significant time-dependent reduction in Staphylococcus aureus and Salmonella enterica viability above 10 and 130 mg L-1 of the synthesized materials, respectively. The viability of cells is reduced over time compared to control samples. The findings will help in widening the use of BAC as a disinfectant and bactericidal agent, especially in pharmaceutical and food industries where Gram-positive and Gram-negative bacterial contamination is common.
Collapse
Affiliation(s)
- Viktor Dubovoy
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Anjani Ganti
- Department of Chemical and Biochemical Engineering , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Tao Zhang
- Department of Chemical and Biochemical Engineering , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Hassan Al-Tameemi
- Department of Biochemistry and Microbiology , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Juan D Cerezo
- Department of Biochemistry and Microbiology , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States.,Department of Chemical and Biochemical Engineering , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
12
|
Dement’eva OV, Semiletov AM, Chirkunov AA, Rudoy VM, Kuznetsov YI. Sol–Gel Synthesis of SiO2 Containers Using Micelles of an Anionic Corrosion Inhibitor as a Template and the Prospects of Creation Protective Coatings Based on Them. COLLOID JOURNAL 2018. [DOI: 10.1134/s1061933x18050058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Li Z, Zhang Y, Zhang K, Wu Z, Feng N. Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:578-587. [DOI: 10.1080/21691401.2018.1431651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhe Li
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Nianping Feng
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
14
|
Dement’eva OV, Naumova KA, Senchikhin IN, Roumyantseva TB, Rudoy VM. Sol–gel synthesis of mesostructured SiO2 containers using vesicles of hydrolyzable bioactive gemini surfactant as a template. COLLOID JOURNAL 2017. [DOI: 10.1134/s1061933x17040020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|