1
|
Santos CMM, Silva AMS. Transition Metal-Catalyzed Transformations of Chalcones. CHEM REC 2024; 24:e202400060. [PMID: 39008887 DOI: 10.1002/tcr.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Indexed: 07/17/2024]
Abstract
Chalcones are a class of naturally occurring flavonoid compounds associated to a variety of biological and pharmacological properties. Several reviews have been published describing the synthesis and biological properties of a vast array of analogues. However, overviews on the reactivity of chalcones has only been explored in a few accounts. To fill this gap, a systematic survey on the most recent developments in the transition metal-catalyzed transformation of chalcones was performed. The chemistry of copper, palladium, zinc, iron, manganese, nickel, ruthenium, cobalt, rhodium, iridium, silver, indium, gold, titanium, platinum, among others, as versatile catalysts will be highlighted, covering the literature from year 2000 to 2023, in more than 380 publications.
Collapse
Affiliation(s)
- Clementina M M Santos
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Bragança, Apolónia, 5300-253, Bragança, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
de Oliveira Viana J, Monteiro AFM, Filho JMB, Scotti L, Scotti MT. The Azoles in Pharmacochemistry: Perspectives on the Synthesis of New Compounds and Chemoinformatic Contributions. Curr Pharm Des 2020; 25:4702-4716. [DOI: 10.2174/1381612825666191125090700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
:
Due to their versatile biological activity, Azoles are widely studied in pharmacochemistry. It is possible
to use them in many applications and in studies aimed at discovering antiparasitic, antineoplastic, antiviral,
antimicrobial compounds; and in the production of materials for treatment of varied pathologies. Based on their
biological activity, our review presents several studies that involve this class of organic compounds. A bibliographic
survey of this type can effectively contribute to pharmaceutical sciences, stimulating the discovery of new
compounds, and structural improvements to biological profiles of interest. In this review, articles are discussed
involving the synthesis of new compounds and chemoinformatic contributions. Current applications of azoles in
both the pharmaceutical and agri-business sectors are well known, yet as this research highlights, azole compounds
can also bring important contributions to the fight against many diseases. Among the heterocyclics, azoles
are increasingly studied by research groups around the world for application against tuberculosis, HIV, fungal and
bacterial infections; and against parasites such as leishmaniasis and trypanosomiasis. Our hope is that this work
will help arouse the interest of research groups planning to develop new bioactives to fight against these and
other diseases.
Collapse
Affiliation(s)
- Jéssika de Oliveira Viana
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| | - Alex France Messias Monteiro
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| | - José Maria Barbosa Filho
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| | - Luciana Scotti
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| | - Marcus Tullius Scotti
- Natural and Synthetic Bioactive Products Program (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa- PB, Brazil
| |
Collapse
|
4
|
Kaushik CP, Sangwan J, Luxmi R, Kumar K, Pahwa A. Synthetic Routes for 1,4-disubstituted 1,2,3-triazoles: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190514074146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.
Collapse
Affiliation(s)
- Chander P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Krishan Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| |
Collapse
|
5
|
Synthesis of (1,2,3-thiadiazolyl)imidazolidine-2,4-diones by microwave irradiation and characterization of their biological activity. Chem Heterocycl Compd (N Y) 2017. [DOI: 10.1007/s10593-017-1986-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|