1
|
Leitzke M, Roach DT, Hesse S, Schönknecht P, Becker GA, Rullmann M, Sattler B, Sabri O. Long COVID - a critical disruption of cholinergic neurotransmission? Bioelectron Med 2025; 11:5. [PMID: 40011942 DOI: 10.1186/s42234-025-00167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Following the COVID-19 pandemic, there are many chronically ill Long COVID (LC) patients with different symptoms of varying degrees of severity. The pathological pathways of LC remain unclear until recently and make identification of path mechanisms and exploration of therapeutic options an urgent challenge. There is an apparent relationship between LC symptoms and impaired cholinergic neurotransmission. METHODS This paper reviews the current literature on the effects of blocked nicotinic acetylcholine receptors (nAChRs) on the main affected organ and cell systems and contrasts this with the unblocking effects of the alkaloid nicotine. In addition, mechanisms are presented that could explain the previously unexplained phenomenon of post-vaccination syndrome (PVS). The fact that not only SARS-CoV-2 but numerous other viruses can bind to nAChRs is discussed under the assumption that numerous other post-viral diseases and autoimmune diseases (ADs) may also be due to impaired cholinergic transmission. We also present a case report that demonstrates changes in cholinergic transmission, specifically, the availability of α4β2 nAChRs by using (-)-[18F]Flubatine whole-body positron emission tomography (PET) imaging of cholinergic dysfunction in a LC patient along with a significant neurological improvement before and after low-dose transcutaneous nicotine (LDTN) administration. Lastly, a descriptive analysis and evaluation were conducted on the results of a survey involving 231 users of LDTN. RESULTS A substantial body of research has emerged that offers a compelling explanation for the phenomenon of LC, suggesting that it can be plausibly explained because of impaired nAChR function in the human body. Following a ten-day course of transcutaneous nicotine administration, no enduring neuropathological manifestations were observed in the patient. This observation was accompanied by a significant increase in the number of free ligand binding sites (LBS) of nAChRs, as determined by (-)-[18F]Flubatine PET imaging. The analysis of the survey shows that the majority of patients (73.5%) report a significant improvement in the symptoms of their LC/MEF/CFS disease as a result of LDTN. CONCLUSIONS In conclusion, based on current knowledge, LDTN appears to be a promising and safe procedure to relieve LC symptoms with no expected long-term harm.
Collapse
Affiliation(s)
- Marco Leitzke
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany.
- Department of Anesthesiology, Intensive Care Medicine, Pain- and Palliative Therapy Helios Clinics, Colditzer Straße 48, Leisnig, 04703, Germany.
| | - Donald Troy Roach
- School of Comillas University, Renegade Research, Madrid, 28015, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Peter Schönknecht
- Department of Psychiatry and Neurology Altscherbitz, Schkeuditz, 04435, Germany
- Outpatient Department for Forensic-Psychiatric Research, University of Leipzig, Leipzig, 04103, Germany
| | - Georg-Alexander Becker
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Bernhardt Sattler
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Centre, Leipzig, 04103, Germany
| |
Collapse
|
2
|
Severyukhina MS, Ojomoko LO, Shelukhina IV, Kudryavtsev DS, Kryukova EV, Epifanova LA, Denisova DA, Averin AS, Ismailova AM, Shaykhutdinova ER, Dyachenko IA, Egorova NS, Murashev AN, Tsetlin VI, Utkin YN. Non-conventional toxin WTX and its disulfide-fixed synthetic fragments: Interaction with nicotinic acetylcholine receptors and reduction of blood pressure. Int J Biol Macromol 2025; 288:138626. [PMID: 39667465 DOI: 10.1016/j.ijbiomac.2024.138626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Non-conventional snake venom toxins, such as WTX from the cobra Naja kaouthia, are three-finger proteins containing a fifth disulfide bond in the N-terminal polypeptide loop I and inhibiting α7 and muscle-type nicotinic acetylcholine receptors (nAChRs). Because the central polypeptide loop II of non-conventional toxins plays an important role in their biological activity, we synthesized several WTX loop II fragments with two cysteine residues added at the N- and C-termini and oxidized to form a disulfide bond. The inhibition by peptides of several nAChRs subtypes was investigated using different methods and the effects of peptides on the rat arterial pressure and heart rate were analyzed. The synthetic fragments inhibited α7 and muscle-type nAChRs more potently than WTX. We showed for the first time that WTX and its fragments inhibited α9α10 as well as neuronal α3β2 and α4β2 nAChRs, again the synthetic fragments being more potent than WTX. The loop II fragments reduced blood pressure more potently than WTX in normotensive, awake rats. In connection with this, the WTX cardiovascular effects were analyzed and it was found that toxin very weakly affected parameters of papillary muscle contractions with no influence on aortic ring contractility. The observed effects were not so significant to explain the decrease in BP, the hemodynamic effects of WTX appearing not to result from direct influence on the myocardium and blood vessels. The synthetic fragments of the N- and C-terminal loops I and III were inactive in all tests. Thus, both in inhibition of all analyzed nAChR subtypes and in reduction of blood pressure, fragments of the central loop II were more active than WTX. This appears to be a first indication for three-finger proteins that the fragments of the central loop II are more active than the native toxin.
Collapse
Affiliation(s)
- Maria S Severyukhina
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Lucy O Ojomoko
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Irina V Shelukhina
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Denis S Kudryavtsev
- PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Elena V Kryukova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Lybov A Epifanova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Daria A Denisova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Alexey S Averin
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave., Madison, WI 53705, USA
| | - Alina M Ismailova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Elvira R Shaykhutdinova
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia; PushchGENI - Branch of BIOTECH University, 3 Prospekt Nauki, 142290 Pushchino, Russia
| | - Igor A Dyachenko
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia
| | - Natalya S Egorova
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Arkady N Murashev
- Biological Testing Laboratory, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Prospekt Nauki, 142290 Pushchino, Russia
| | - Victor I Tsetlin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklay Str., 117997 Moscow, Russia.
| |
Collapse
|
3
|
Liu Chung Ming C, Wang X, Gentile C. Protective role of acetylcholine and the cholinergic system in the injured heart. iScience 2024; 27:110726. [PMID: 39280620 PMCID: PMC11402255 DOI: 10.1016/j.isci.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
This review explores the roles of the cholinergic system in the heart, comprising the neuronal and non-neuronal cholinergic systems. Both systems are essential for maintaining cardiac homeostasis by regulating the release of acetylcholine (ACh). A reduction in ACh release is associated with the early onset of cardiovascular diseases (CVDs), and increasing evidence supports the protective roles of ACh against CVD. We address the challenges and limitations of current strategies to elevate ACh levels, including vagus nerve stimulation and pharmacological interventions such as cholinesterase inhibitors. Additionally, we introduce alternative strategies to increase ACh in the heart, such as stem cell therapy, gene therapy, microRNAs, and nanoparticle drug delivery methods. These findings offer new insights into advanced treatments for regenerating the injured human heart.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| | - Xiaowei Wang
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
4
|
Gergs U, Wackerhagen S, Fuhrmann T, Schäfer I, Neumann J. Further investigations on the influence of protein phosphatases on the signaling of muscarinic receptors in the atria of mouse hearts. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5731-5743. [PMID: 38308688 PMCID: PMC11329414 DOI: 10.1007/s00210-024-02973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The vagal regulation of cardiac function involves acetylcholine (ACh) receptor activation followed by negative chronotropic and negative as well as positive inotropic effects. The resulting signaling pathways may include Gi/o protein-coupled reduction in adenylyl cyclase (AC) activity, direct Gi/o protein-coupled activation of ACh-activated potassium current (IKACh), inhibition of L-type calcium ion channels, and/or the activation of protein phosphatases. Here, we studied the role of the protein phosphatases 1 (PP1) and 2A (PP2A) for muscarinic receptor signaling in isolated atrial preparations of transgenic mice with cardiomyocyte-specific overexpression of either the catalytic subunit of PP2A (PP2A-TG) or the inhibitor-2 (I2) of PP1 (I2-TG) or in double transgenic mice overexpressing both PP2A and I2 (DT). In mouse left atrial preparations, carbachol (CCh), cumulatively applied (1 nM-10 µM), exerted at low concentrations a negative inotropic effect followed by a positive inotropic effect at higher concentrations. This biphasic effect was noted with CCh alone as well as when CCh was added after β-adrenergic pre-stimulation with isoprenaline (1 µM). Whereas the response to stimulation of β-adrenoceptors or adenosine receptors (used as controls) was changed in PP2A-TG, the response to CCh was unaffected in atrial preparations from all transgenic models studied here. Therefore, the present data tentatively indicate that neither PP2A nor PP1, but possibly other protein phosphatases, is involved in the muscarinic receptor-induced inotropic and chronotropic effects in the mouse heart.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany.
| | - Silke Wackerhagen
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Tobias Fuhrmann
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Inka Schäfer
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| | - Joachim Neumann
- Institut Für Pharmakologie Und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097, Magdeburger Str. 4, 06112, Halle, Germany
| |
Collapse
|
5
|
Azargoonjahromi A. Current Findings and Potential Mechanisms of KarXT (Xanomeline-Trospium) in Schizophrenia Treatment. Clin Drug Investig 2024; 44:471-493. [PMID: 38904739 DOI: 10.1007/s40261-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Standard schizophrenia treatment involves antipsychotic medications that target D2 dopamine receptors. However, these drugs have limitations in addressing all symptoms and can lead to adverse effects such as motor impairments, metabolic effects, sedation, sexual dysfunction, cognitive impairment, and tardive dyskinesia. Recently, KarXT has emerged as a novel drug for schizophrenia. KarXT combines xanomeline, a muscarinic receptor M1 and M4 agonist, with trospium, a nonselective antimuscarinic agent. Of note, xanomeline can readily cross blood-brain barrier (BBB) and, thus, enter into the brain, thereby stimulating muscarinic receptors (M1 and M4). By doing so, xanomeline has been shown to target negative symptoms and potentially improve positive symptoms. Trospium, on the other hand, is not able to cross BBB, thereby not affecting M1 and M4 receptors; instead, it acts as an antimuscarinic agent and, hence, diminishes peripheral activity of muscarinic receptors to minimize side effects probably stemming from xanomeline in other organs. Accordingly, ongoing clinical trials investigating KarXT's efficacy in schizophrenia have demonstrated positive outcomes, including significant improvements in the Positive and Negative Syndrome Scale (PANSS) total score and cognitive function compared with placebo. These findings emphasize the potential of KarXT as a promising treatment for schizophrenia, providing symptom relief while minimizing side effects associated with xanomeline monotherapy. Despite such promising evidence, further research is needed to confirm the efficacy, safety, and tolerability of KarXT in managing schizophrenia. This review article explores the current findings and potential mechanisms of KarXT in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Ali Azargoonjahromi
- Shiraz University of Medical Sciences, Janbazan Blv, 14th Alley, Jahrom, Shiraz, 7417773539, Fars, Iran.
| |
Collapse
|
6
|
Gurgoglione FL, Vignali L, Montone RA, Rinaldi R, Benatti G, Solinas E, Leone AM, Galante D, Campo G, Biscaglia S, Porto I, Benenati S, Niccoli G. Coronary Spasm Testing with Acetylcholine: A Powerful Tool for a Personalized Therapy of Coronary Vasomotor Disorders. Life (Basel) 2024; 14:292. [PMID: 38541619 PMCID: PMC10970947 DOI: 10.3390/life14030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Coronary vasomotor disorders (CVD) are characterized by transient hypercontraction of coronary vascular smooth muscle cells, leading to hypercontraction of epicardial and/or microvascular coronary circulation. CVDs play a relevant role in the pathogenesis of ischemia, angina and myocardial infarction with non-obstructive coronary arteries. Invasive provocative testing with intracoronary Acetylcholine (ACh) administration is the gold standard tool for addressing CVD, providing relevant therapeutic and prognostic implications. However, safety concerns preclude the widespread incorporation of the ACh test into clinical practice. The purpose of this review is to shed light on the pathophysiology underlying CVD and on the clinical role of the ACh test, focusing on safety profile and prognostic implications. We will also discuss contemporary evidence on the management of CVD and the role of the ACh test in driving a personalized approach of patients with CVD.
Collapse
Affiliation(s)
| | - Luigi Vignali
- Division of Cardiology, Parma University Hospital, 43126 Parma, Italy; (L.V.); (G.B.); (E.S.)
| | - Rocco Antonio Montone
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Riccardo Rinaldi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Giorgio Benatti
- Division of Cardiology, Parma University Hospital, 43126 Parma, Italy; (L.V.); (G.B.); (E.S.)
| | - Emilia Solinas
- Division of Cardiology, Parma University Hospital, 43126 Parma, Italy; (L.V.); (G.B.); (E.S.)
| | - Antonio Maria Leone
- Center of Excellence in Cardiovascular Sciences, Ospedale Isola Tiberina, Gemelli Isola Roma, 00186 Rome, Italy; (A.M.L.); (D.G.)
| | - Domenico Galante
- Center of Excellence in Cardiovascular Sciences, Ospedale Isola Tiberina, Gemelli Isola Roma, 00186 Rome, Italy; (A.M.L.); (D.G.)
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44124 Ferrara, Italy; (G.C.); (S.B.)
| | - Simone Biscaglia
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, 44124 Ferrara, Italy; (G.C.); (S.B.)
| | - Italo Porto
- Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy; (I.P.); (S.B.)
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino—Italian IRCCS Cardiology Network, 16126 Genoa, Italy
| | - Stefano Benenati
- Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy; (I.P.); (S.B.)
| | - Giampaolo Niccoli
- Division of Cardiology, Parma University Hospital, University of Parma, 43126 Parma, Italy;
| |
Collapse
|