1
|
Eldeen AZE, El-Aziz FEZAA, Sayed AM, Mousa SAS, Asmaey MA. Exploring the phytochemical composition of Salsola imbricata: investigating its protective potential against UV-C radiation in earthworms and isopods models. 3 Biotech 2025; 15:97. [PMID: 40130210 PMCID: PMC11929650 DOI: 10.1007/s13205-025-04233-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025] Open
Abstract
The aqueous ethanolic extract of Salsola imbricata (AEESI) demonstrated significant protective effects against UV-C radiation damage, using earthworms and isopods as models for human skin and eyes, respectively. High-performance liquid chromatography (HPLC) analysis identified 15 bioactive polyphenolic compounds in AEESI, with chlorogenic acid (55.51 µg/ml) and gallic acid (46.69 µg/ml) as the dominant phenolic acids, and naringenin (40.42 µg/ml) as the primary flavonoid. The extract effectively mitigated histological and ultrastructural damage caused by UV-C radiation in both models. Additionally, quality control parameters, including moisture content, pH, acidity index, ash content, and elemental composition, were determined for the first time. These findings highlight the potential of S. imbricata extract as a protective agent against UV-C radiation-induced damage, attributed to its rich polyphenolic content.
Collapse
Affiliation(s)
- Ahmed Z. Ezz Eldeen
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| | | | - Ahmed M. Sayed
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516 Egypt
| | - Sayed A. S. Mousa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| | - Mostafa A. Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524 Egypt
| |
Collapse
|
2
|
Recombinant Spidroin Microgel as the Base of Cell-Engineered Constructs Mediates Liver Regeneration in Rats. Polymers (Basel) 2022; 14:polym14153179. [PMID: 35956695 PMCID: PMC9370922 DOI: 10.3390/polym14153179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Aim: In this study, we seek to check if recombinant spidroin rS1/9 is applicable for cell-engineering construct development. Novel technologies of cell and tissue engineering are relevant for chronic liver failure management. Liver regeneration may represent one of the possible treatment options if a cell-engineered construct (CEC) is used. Nowadays, one can see the continuous study of various matrices to create an appropriate CEC. Materials and Methods: We have adhered allogenic liver cells and multipotent mesenchymal bone marrow stem cells (MMSC BM) to a microgel with recombinant spidroin rS1/9. Then we have studied the developed implantable CEC in a rat model (n = 80) of chronic liver failure achieved by prolonged poisoning with carbon tetrachloride. Results: Our results demonstrate that the CECs change the values of biochemical tests and morphological parameters in chronic liver failure in rats. Conclusion: We consider there to be a positive effect from the microgel-based CECs with recombinant spidroin rS1/9 in the treatment of chronic liver failure.
Collapse
|
3
|
Mohammadi S, Ravanbakhsh H, Taheri S, Bao G, Mongeau L. Immunomodulatory Microgels Support Proregenerative Macrophage Activation and Attenuate Fibroblast Collagen Synthesis. Adv Healthc Mater 2022; 11:e2102366. [PMID: 35122412 DOI: 10.1002/adhm.202102366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Indexed: 11/05/2022]
Abstract
Scars composed of fibrous connective tissues are natural consequences of injury upon incisional wound healing in soft tissues. Hydrogels that feature a sustained presentation of immunomodulatory cytokines are known to modulate wound healing. However, existing immunomodulatory hydrogels lack interconnected micropores to promote cell ingrowth. Other limitations include invasive delivery procedures and harsh synthesis conditions that are incompatible with drug molecules. Here, hybrid nanocomposite microgels containing interleukin-10 (IL-10) are reported to modulate tissue macrophage phenotype during wound healing. The intercalation of laponite nanoparticles in the polymer network yields microgels with tissue-mimetic elasticity (Young's modulus in the range of 2-6 kPa) and allows the sustained release of IL-10 to promote the differentiation of macrophages toward proregenerative phenotypes. The porous interstitial spaces between microgels promote fibroblast proliferation and fast trafficking (an average speed of ≈14.4 µm h-1 ). The incorporation of hyaluronic acid further enhances macrophage infiltration. The coculture of macrophages and fibroblasts treated with transforming growth factor-beta 1 resulted in a twofold reduction in collagen-I production for microgels releasing IL-10 compared to the IL-10 free group. The new microgels show potential toward regenerative healing by harnessing the antifibrotic behavior of host macrophages.
Collapse
Affiliation(s)
- Sepideh Mohammadi
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Hossein Ravanbakhsh
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Sareh Taheri
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Guangyu Bao
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Luc Mongeau
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|
4
|
Silk Fibroin/Spidroin Electrospun Scaffolds for Full-Thickness Skin Wound Healing in Rats. Pharmaceutics 2021; 13:pharmaceutics13101704. [PMID: 34683996 PMCID: PMC8539429 DOI: 10.3390/pharmaceutics13101704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The main goal of our research was to fabricate electrospun scaffolds from three different silk proteins—silk fibroin from Bombyx mori silkworm cocoons and two recombinant spidroins, rS2/12 and rS2/12-RGDS—and to perform a comparative analysis of the structure, biological properties, and regenerative potential of the scaffolds in a full-thickness rat skin wound model. The surface and internal structures were investigated using scanning electron microscopy and scanning probe nanotomography. The structures of the scaffolds were similar. The average fiber diameter of the scaffolds was 315 ± 26 nm, the volume porosity was 94.5 ± 1.4%, the surface-to-volume ratio of the scaffolds was 25.4 ± 4.2 μm−1 and the fiber surface roughness was 3.8 ± 0.6 nm. The scaffolds were characterized by a non-cytotoxicity effect and a high level of cytocompatibility with cells. The scaffolds also had high regenerative potential—the healing of the skin wound was accelerated by 19 days compared with the control. A histological analysis did not reveal any fragments of the experimental constructions or areas of inflammation. Thus, novel data on the structure and biological properties of the silk fibroin/spidroin electrospun scaffolds were obtained.
Collapse
|
5
|
Moysenovich AM, Moisenovich MM, Sudina AK, Tatarskiy VV, Khamidullina AI, Yastrebova MA, Davydova LI, Bogush VG, Debabov VG, Arkhipova AY, Shaitan KV, Shtil AA, Demina IA. Recombinant Spidroin Films Attenuate Individual Markers of Glucose Induced Aging in NIH 3T3 Fibroblasts. BIOCHEMISTRY (MOSCOW) 2020; 85:808-819. [PMID: 33040725 DOI: 10.1134/s0006297920070093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The effect of bioresorbable materials on aging in cultured mouse NIH 3T3 fibroblasts treated with elevated glucose concentration was investigated. The cells were grown on films produced from the silkworm fibroin and rS1/9, a recombinant analog of Nephila clavipes spidroin 1. Exposure to 50 mM glucose of the cells grown on uncoated glass support resulted in the cell growth retardation. The average areas of the cells and nuclei and the percentage of apoptotic cells increased, whereas the amount of soluble collagen decreased. In contrast, on the fibroin and spidroin films, the cell density and the percentage of 5-bromo-2'-deoxyuridine (BrdU)-positive cells were higher vs. the cells grown on the glass support. The films protected NIH 3T3 fibroblasts from the glucose-induced death. The most prominent effects on the cell density, BrdU incorporation, and apoptosis prevention were observed in the cells cultured on spidroin films. Unlike the cells grown on glass support (decrease in the soluble collagen production) or fibroin (no effect), production of soluble collagen by the cells grown on spidroin films increased after cell exposure to 50 mM glucose. Molecular analysis demonstrated that 50 mM glucose upregulated phosphorylation of the NFκB heterodimer p65 subunit in the cells grown on the glass support. The treatment of cells grown on fibroin films with 5.5 mM or 50 mM glucose had no effect on p65 phosphorylation. The same treatment decreased p65 phosphorylation in the cells on the spidroin films. These results demonstrate the anti-aging efficacy of biomaterials derived from the silk proteins and suggest that spidroin is more advantageous for tissue engineering and therapy than fibroin.
Collapse
Affiliation(s)
- A M Moysenovich
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - M M Moisenovich
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - A K Sudina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - V V Tatarskiy
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,National University of Science and Technology "MISiS", Moscow, 119049, Russia
| | - A I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - M A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - L I Davydova
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Moscow, 117519, Russia.,NRC "Kurchatov Institute", Moscow, 123182, Russia
| | - V G Bogush
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Moscow, 117519, Russia.,NRC "Kurchatov Institute", Moscow, 123182, Russia
| | - V G Debabov
- NRC "Kurchatov Institute" - GOSNIIGENETIKA, Moscow, 117519, Russia.,NRC "Kurchatov Institute", Moscow, 123182, Russia
| | - A Yu Arkhipova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Moscow Regional Research and Clinical Institute (MONIKI), Moscow, 129110, Russia
| | - K V Shaitan
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - I A Demina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| |
Collapse
|
6
|
Abstract
Spider web proteins are unique materials created by nature that, considering the combination of their properties, do not have analogues among natural or human-created materials. Obtaining significant amounts of these proteins from natural sources is not feasible. Biotechnological manufacturing in heterological systems is complicated by the very high molecular weight of spidroins and their specific amino acid composition. Obtaining recombinant analogues of spidroins in heterological systems, mainly in bacteria and yeast, has become a compromise solution. Because they can self-assemble, these proteins can form various materials, such as fibers, films, 3D-foams, hydrogels, tubes, and microcapsules. The effectiveness of spidroin hydrogels in deep wound healing, as 3D scaffolds for bone tissue regeneration and as oriented fibers for axon growth and nerve tissue regeneration, was demonstrated in animal models. The possibility to use spidroin micro- and nanoparticles for drug delivery was demonstrated, including the use of modified spidroins for virus-free DNA delivery into animal cell nuclei. In the past few years, significant interest has arisen concerning the use of these materials as biocompatible and biodegradable soft optics to construct photonic crystal super lenses and fiber optics and as soft electronics to use in triboelectric nanogenerators. This review summarizes the latest achievements in the field of spidroin production, the creation of materials based on them, the study of these materials as a scaffold for the growth, proliferation, and differentiation of various types of cells, and the prospects for using these materials for medical applications (e.g., tissue engineering, drug delivery, coating medical devices), soft optics, and electronics. Accumulated data suggest the use of recombinant spidroins in medical practice in the near future.
Collapse
Affiliation(s)
- Vladimir G Debabov
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute"-GOSNIIGENETIKA), Moscow 117545, Russia
| | - Vladimir G Bogush
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute" (NRC "Kurchatov Institute"-GOSNIIGENETIKA), Moscow 117545, Russia
| |
Collapse
|
7
|
Zhuikov VA, Zhuikova YV, Makhina TK, Myshkina VL, Rusakov A, Useinov A, Voinova VV, Bonartseva GA, Berlin AA, Bonartsev AP, Iordanskii AL. Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers (Basel) 2020; 12:728. [PMID: 32214006 PMCID: PMC7183050 DOI: 10.3390/polym12030728] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 01/23/2023] Open
Abstract
The hydrolytic and enzymatic degradation of polymer films of poly(3-hydroxybutyrate) (PHB) of different molecular mass and its copolymers with 3-hydroxyvalerate (PHBV) of different 3-hydroxyvalerate (3-HV) content and molecular mass, 3-hydroxy-4-methylvalerate (PHB4MV), and polyethylene glycol (PHBV-PEG) produced by the Azotobacter chroococcum 7B by controlled biosynthesis technique were studied under in vitro model conditions. The changes in the physicochemical properties of the polymers during their in vitro degradation in the pancreatic lipase solution and in phosphate-buffered saline for a long time (183 days) were investigated using different analytical techniques. A mathematical model was used to analyze the kinetics of hydrolytic degradation of poly(3-hydroxyaklannoate)s by not autocatalytic and autocatalytic hydrolysis mechanisms. It was also shown that the degree of crystallinity of some polymers changes differently during degradation in vitro. The total mass of the films decreased slightly up to 8-9% (for the high-molecular weight PHBV with the 3-HV content 17.6% and 9%), in contrast to the copolymer molecular mass, the decrease of which reached 80%. The contact angle for all copolymers after the enzymatic degradation decreased by an average value of 23% compared to 17% after the hydrolytic degradation. Young's modulus increased up to 2-fold. It was shown that the effect of autocatalysis was observed during enzymatic degradation, while autocatalysis was not available during hydrolytic degradation. During hydrolytic and enzymatic degradation in vitro, it was found that PHBV, containing 5.7-5.9 mol.% 3-HV and having about 50% crystallinity degree, presents critical content, beyond which the structural and mechanical properties of the copolymer have essentially changed. The obtained results could be applicable to biomedical polymer systems and food packaging materials.
Collapse
Affiliation(s)
- Vsevolod A. Zhuikov
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Yuliya V. Zhuikova
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Tatiana K. Makhina
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Vera L. Myshkina
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Alexey Rusakov
- Federal State Budgetary Institution “Technological Institute for Superhard and Novel Carbon Materials”, 7a Tsentralnaya Street, Troitsk, 108840 Moscow, Russia; (A.R.); (A.U.)
| | - Alexey Useinov
- Federal State Budgetary Institution “Technological Institute for Superhard and Novel Carbon Materials”, 7a Tsentralnaya Street, Troitsk, 108840 Moscow, Russia; (A.R.); (A.U.)
| | - Vera V. Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Garina A. Bonartseva
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
| | - Alexandr A. Berlin
- Research Center of Chemical Physics the Russian Academy of Sciences, Kosygin str. 4, 119991 Moscow, Russia; (A.A.B.); (A.L.I.)
| | - Anton P. Bonartsev
- Research Center of Biotechnology of the Russian Academy of Sciences 33, Bld. 2 Leninsky Ave, 119071 Moscow, Russia; (Y.V.Z.); (T.K.M.); (V.L.M.); (G.A.B.); (A.P.B.)
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Alexey L. Iordanskii
- Research Center of Chemical Physics the Russian Academy of Sciences, Kosygin str. 4, 119991 Moscow, Russia; (A.A.B.); (A.L.I.)
| |
Collapse
|
8
|
Abd Ellah NH, Abd El‐Aziz FEA, Abouelmagd SA, Abd El‐Hamid BN, Hetta HF. Spidroin in carbopol‐based gel promotes wound healing in earthworm's skin model. Drug Dev Res 2019; 80:1051-1061. [DOI: 10.1002/ddr.21583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Noura H. Abd Ellah
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Medical Sciences BuildingUniversity of Cincinnati Cincinnati Ohio USA
- Department of Pharmaceutics, Faculty of PharmacyAssiut University Assiut Egypt
| | | | - Sara A. Abouelmagd
- Department of Pharmaceutics, Faculty of PharmacyAssiut University Assiut Egypt
| | | | - Helal F. Hetta
- Department of Internal MedicineUniversity of Cincinnati College of Medicine Cincinnati Ohio USA
- Department of Medical Microbiology and Immunology, Faculty of MedicineAssiut University Assiut Egypt
| |
Collapse
|
9
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 552] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
10
|
Nosenko MA, Moysenovich AM, Zvartsev RV, Arkhipova AY, Zhdanova AS, Agapov II, Vasilieva TV, Bogush VG, Debabov VG, Nedospasov SA, Moisenovich MM, Drutskaya MS. Novel Biodegradable Polymeric Microparticles Facilitate Scarless Wound Healing by Promoting Re-epithelialization and Inhibiting Fibrosis. Front Immunol 2018; 9:2851. [PMID: 30564244 PMCID: PMC6288351 DOI: 10.3389/fimmu.2018.02851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/19/2018] [Indexed: 01/20/2023] Open
Abstract
Despite decades of research, the goal of achieving scarless wound healing remains elusive. One of the approaches, treatment with polymeric microcarriers, was shown to promote tissue regeneration in various in vitro models of wound healing. The in vivo effects of such an approach are attributed to transferred cells with polymeric microparticles functioning merely as inert scaffolds. We aimed to establish a bioactive biopolymer carrier that would promote would healing and inhibit scar formation in the murine model of deep skin wounds. Here we characterize two candidate types of microparticles based on fibroin/gelatin or spidroin and show that both types increase re-epithelialization rate and inhibit scar formation during skin wound healing. Interestingly, the effects of these microparticles on inflammatory gene expression and cytokine production by macrophages, fibroblasts, and keratinocytes are distinct. Both types of microparticles, as well as their soluble derivatives, fibroin and spidroin, significantly reduced the expression of profibrotic factors Fgf2 and Ctgf in mouse embryonic fibroblasts. However, only fibroin/gelatin microparticles induced transient inflammatory gene expression and cytokine production leading to an influx of inflammatory Ly6C+ myeloid cells to the injection site. The ability of microparticle carriers of equal proregenerative potential to induce inflammatory response may allow their subsequent adaptation to treatment of wounds with different bioburden and fibrotic content.
Collapse
Affiliation(s)
- Maxim A Nosenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Ruslan V Zvartsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Y Arkhipova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia.,Moscow Regional Research and Clinical Institute ("MONIKI"), Moscow, Russia
| | - Anastasia S Zhdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Igor I Agapov
- V. I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Tamara V Vasilieva
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir G Bogush
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute", Moscow, Russia
| | - Vladimir G Debabov
- State Research Institute for Genetics and Selection of Industrial Microorganisms of National Research Center "Kurchatov Institute", Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018; 54:547-568. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/11/2025]
|
12
|
Bonartsev AP, Zharkova II, Voinova VV, Kuznetsova ES, Zhuikov VA, Makhina TK, Myshkina VL, Potashnikova DM, Chesnokova DV, Khaydapova DD, Bonartseva GA, Shaitan KV. Poly(3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells. 3 Biotech 2018; 8:328. [PMID: 30073113 PMCID: PMC6051946 DOI: 10.1007/s13205-018-1350-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Development of biocompatible 3D scaffolds is one of the most important challenges in tissue engineering. In this study, we developed polymer scaffolds of different design and microstructure to study cell growth in them. To obtain scaffolds of various microstructure, e.g., size of pores, we used double- and one-stage leaching methods using porogens with selected size of crystals. A composite of poly(3-hydroxybutyrate) (PHB) with poly(ethylene glycol) (PEG) (PHB/PEG) was used as polymer biomaterial for scaffolds. The morphology of scaffolds was analyzed by scanning electron microscopy; the Young modulus of scaffolds was measured by rheometry. The ability to support growth of mesenchymal stem cells (MSCs) in scaffolds was studied using the XTT assay; the phenotype of MSC was preliminarily confirmed by flow cytometry and the activity of alkaline phosphatase and expression level of CD45 marker was studied to test possible MSC osteogenic differentiation. The obtained scaffolds had different microstructure: the scaffolds with uniform pore size of about 125 µm (normal pores) and 45 µm (small pores) and scaffolds with broadly distributed pores size from about 50-100 µm. It was shown that PHB/PEG scaffolds with uniform pores of normal size did not support MSCs growth probably due to their marked spontaneous osteogenic differentiation in these scaffolds, whereas PHB/PEG scaffolds with diverse pore size promoted stem cells growth that was not accompanied by pronounced differentiation. In scaffolds with small pores (about 45 µm), the growth of MSC was the lowest and cell growth suppression was only partially related to stem cells differentiation. Thus, apparently, the broadly distributed pore size of PHB/PEG scaffolds promoted MSC growth in them, whereas uniform size of scaffold pores stimulated MSC osteogenic differentiation.
Collapse
Affiliation(s)
- A. P. Bonartsev
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - I. I. Zharkova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - V. V. Voinova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - E. S. Kuznetsova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - V. A. Zhuikov
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - T. K. Makhina
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - V. L. Myshkina
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - D. M. Potashnikova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - D. V. Chesnokova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - D. D. Khaydapova
- Faculty of Soil Science, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - G. A. Bonartseva
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - K. V. Shaitan
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| |
Collapse
|
13
|
Zhuikov VA, Bonartsev AP, Makhina TK, Myshkina VL, Voinova VV, Bonartseva GA, Shaitan KV. Hydrolytic Degradation of Poly(3-Hydroxybutyrate) and Its Copolymer with 3-Hydroxyvalerate of Different Molecular Weights in vitro. Biophysics (Nagoya-shi) 2018; 63:169-176. [DOI: 10.1134/s0006350918020288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/02/2017] [Indexed: 01/11/2025] Open
|
14
|
Bessonov IV, Kotliarova MS, Kopitsyna MN, Fedulov AV, Moysenovich AM, Arkhipova AY, Bogush VG, Bagrov DV, Ramonova AA, Mashkov AE, Shaitan KV, Moisenovich MM. Photocurable Hydrogels Containing Spidroin or Fibroin. ACTA ACUST UNITED AC 2017. [DOI: 10.3103/s0096392518010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Moisenovich MM, Kulikov DA, Goncharenko AV, Arkhipova AY, Vasiljeva TV, Filyushkin YN, Arkhipova LV, Kotlyarova MS, Kulikov AV, Mashkov AE, Agapov II, Kirpichnikov MP. Regeneration of jejunal wall defect using an implant based on silk fibroin fibers. DOKL BIOCHEM BIOPHYS 2017; 472:12-14. [PMID: 28421432 DOI: 10.1134/s1607672917010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 02/04/2023]
Abstract
Regenerative properties of fibroin implant vitalized with allogeneic bone marrow cells were assessed. The study was performed using the experimental model of rat jejunum wall damage. Three weeks after surgery, we observed recovery of all layers of the jejunum wall at the site of injury and complete degradation of the implant material.
Collapse
Affiliation(s)
- M M Moisenovich
- Biological Faculty, Moscow State University, Moscow, 119234, Russia.
| | - D A Kulikov
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, 129110, Russia
| | - A V Goncharenko
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - A Y Arkhipova
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - T V Vasiljeva
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Yu N Filyushkin
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, 129110, Russia
| | - L V Arkhipova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - M S Kotlyarova
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - A V Kulikov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290, Russia
| | - A E Mashkov
- Vladimirskii Moscow Regional Research Clinical Institute, Moscow, 129110, Russia
| | - I I Agapov
- Shumakov Federal Research Center of Transplantation and Artificial Organs, Ministry of Healthcare of the Russian Federation, Moscow, 113182, Russia
| | - M P Kirpichnikov
- Biological Faculty, Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
16
|
Moisenovich MM, Malyuchenko NV, Arkhipova AY, Goncharenko AV, Kotlyarova MS, Davydova LI, Vasil’eva TV, Bogush VG, Agapov II, Debabov VG, Kirpichnikov MP. Recombinant 1F9 spidroin microgels for murine full-thickness wound repairing. DOKL BIOCHEM BIOPHYS 2016; 466:9-12. [DOI: 10.1134/s1607672916010038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/22/2022]
|