1
|
Moraes MA, Arabe LB, Resende BL, Codo BC, Reis ALAL, Souza BR. The gold standard control groups in physiological and pharmacological research are not that shiny: Intraperitoneal saline injection and needle pricking affect prepubescent mice's behavior in a sex-specific manner. Horm Behav 2025; 169:105707. [PMID: 39965530 DOI: 10.1016/j.yhbeh.2025.105707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/12/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Study design and experimental tools are crucial for good quality science, and an essential part of it is the choice of control groups to best test the hypothesis. Two of the standard control groups in physiological and pharmacological research are needle pricking without substance injection (Sham) and/or vehicle injection (Saline). However, both needle pricking and saline injection can act as stressors, potentially influencing the analyzed outcome. This raises the question of whether the dependent variable remains unaffected by the stress induced by these procedures. Despite the significance of this issue, very few studies have investigated the behavioral effects of a single intraperitoneal (I.P.) Sham and/or single I.P. Saline injection in mice, and those that have used mostly adult males. In this study, we investigated if a single I.P. Sham and/or I.P. Saline injection affects female and male prepubertal (4-weeks-old) mice behavior. After Sham or Saline injection, we examined exploratory/motor behavior (open field test - OFT), anxiety-like behavior (elevated plus-maze - EPM), and behavioral despair/depressive-like behavior (forced swimming test - FST). We observed that both Sham prepubertal females and males showed behavioral alterations in OFT and EPM, and Saline males showed behavioral alterations in OFT and FST. On the other hand, prepubertal Saline females showed an increase in exploratory behavior, risk assessment/anxiety-like behavior, and behavioral despair/depressive-like behavior. Thus, our findings indicate that control procedures commonly used in physiological and pharmacological experimental designs affect the behavior of prepubescent mice, with more pronounced effects in females than in males. This study suggests considering Naïve animals together with Sham and/or Vehicle for a better and more honest interpretation of the data.
Collapse
Affiliation(s)
- Muiara Aparecida Moraes
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Laila Blanc Arabe
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Bruna Lopes Resende
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Beatriz Campos Codo
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Luiza Araújo Lima Reis
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Bruno Rezende Souza
- Laboratory of Neurodevelopment and Evolution - Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
2
|
Kumari M, Dasriya VL, Ali SA, Behare PV. Evaluation of antioxidant and anti-inflammatory properties of Lacticaseibacillus rhamnosus Ram12-derived exopolysaccharide in a D-galactose-induced liver injury mouse model. Int J Biol Macromol 2024; 281:136241. [PMID: 39366628 DOI: 10.1016/j.ijbiomac.2024.136241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
We investigated the antioxidant and anti-inflammatory properties of Lacticaseibacillus rhamnosus Ram12-derived EPSRam12 in a D-galactose-induced liver injury mouse model. Initially, EPSRam12 was characterized for its composition, molecular weight, and structural features. It was then administered orally to D-galactose-induced mice (which had received an intraperitoneal injection of D-galactose, 100 mg/kg body weight) at doses of 25 mg/kg (low dose) and 50 mg/kg (high dose) for 45 days. After treatment, biochemical markers, antioxidant status, cytokine levels, and liver inflammatory gene expression were evaluated. The results showed that EPSRam12 was a branched chain heteropolysaccharide comprising mannose, rhamnose, and arabinose monosaccharides with molecular weight of 2.6 million Daltons. EPSRam12, with its unique structural features such as hydroxyl and methyl groups, glycosidic bonds, and functional groups like carboxylates and sulfates, demonstrated promising bioactive properties. Administering EPSRam12 to D-galactose-induced mice resulted in a significant increase in antioxidant enzyme activity and a reduction in oxidative stress indicators. Additionally, it exhibited anti-inflammatory effects by modulating cytokine levels, lowering pro-inflammatory markers, and inhibiting key inflammatory pathways in the liver in a dose-dependent manner. Our findings underscore the potential of EPSRam12 as an effective antioxidant and anti-inflammatory agent, with promising applications in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Vaishali L Dasriya
- Technofunctional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany
| | - Pradip V Behare
- Technofunctional Starter Lab, National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India.
| |
Collapse
|
3
|
Monroy J, Cortés OD, Domínguez R, Mendoza‐Garrido ME, Gallegos E, Cárdenas M, Aragón A, Ayala ME. The differential sensitivity of the hypothalamic-hypophysial-ovarian axis to 5-hydroxytryptophan alters the secretion of estradiol. Exp Physiol 2024; 109:365-379. [PMID: 38064347 PMCID: PMC10988714 DOI: 10.1113/ep091158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/22/2023] [Indexed: 03/02/2024]
Abstract
Serotonin [5-hydroxytryptamine (5-HT)] modulates ovarian function. The precursor of 5-HT, 5-hydroxytryptophan (5-HTP), has been used to treat depression. However, the effects of 5-HTP on ovarian and reproductive physiology remain unknown. In this research, we analysed the impact of 5-HTP on the monoaminergic system and its interactions with the reproductive axis and ovarian estradiol secretion when administered by distinct routes. Female rats 30 days of age were injected with 5-HTP i.p. (100 mg/kg), into the ovarian bursa (1.5 µg/40 µL) or into the median raphe nucleus (20 µg/2.5 µL) and were killed 60 or 120 min after injection. As controls, we used rats of the same age injected with vehicle (0.9% NaCl). Monoamine, gonadotrophin and steroid ovarian hormone concentrations were measured. The injection of 5-HTP either i.p. or directly into the ovarian bursa increased the concentrations of 5-HT and the metabolite 5-hydroxyindole-3-acetic acid in the ovary. For both routes of administration, the serum concentration of estradiol increased. After i.p. injection of 5-HTP, the concentrations of luteinizing hormone were decreased and follicle-stimulating hormone increased after 120 min. Micro-injection of 5-HTP into the median raphe nucleus increased the concentrations of 5-HT in the anterior hypothalamus and dopamine in the medial hypothalamus after 120 min. Our results suggest that the administration of 5-HTP either i.p. or directly into the ovarian bursa enhances ovarian estradiol secretion.
Collapse
Affiliation(s)
- Juana Monroy
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Omar D. Cortés
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Roberto Domínguez
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - María Eugenia Mendoza‐Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados (CINVESTAV)Instituto Politécnico NacionalMexico CityMexico
| | - Eloir Gallegos
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Mario Cárdenas
- Departamento de Biología de la ReproducciónInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - Andrés Aragón
- Laboratorio de Gametos y Desarrollo Tecnológico, Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaState of MéxicoMexico
| | - María E. Ayala
- Laboratorio de Pubertad, Unidad de Investigación en Biología de la Reproducción, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
4
|
Modulation of the endoplasmic reticulum stress and unfolded protein response mitigates the behavioral effects of early-life stress. Pharmacol Rep 2023; 75:293-319. [PMID: 36843201 PMCID: PMC10060333 DOI: 10.1007/s43440-023-00456-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Early-life stress (ELS) affects brain development and increases the risk of mental disorders associated with the dysfunction of the medial prefrontal cortex (mPFC). The mechanisms of ELS action are not well understood. Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are cellular processes involved in brain maturation through the regulation of pro-survival or proapoptotic processes. We hypothesized that ER stress and the UPR in the mPFC are involved in the neurobiology of ELS. METHODS We performed a maternal separation (MS) procedure from postnatal days 1 to 14 in rats. Before each MS, pups were injected with an inhibitor of ER stress, salubrinal or a vehicle. The mRNA and protein expression of UPR and apoptotic markers were evaluated in the mPFC using RT-qPCR and Western blot methods, respectively. We also estimated the numbers of neurons and glial cells using stereological methods. Additionally, we assessed behavioral phenotypes related to fear, anhedonia and response to psychostimulants. RESULTS MS slightly enhanced the activation of the UPR in juveniles and modulated the expression of apoptotic markers in juveniles and preadolescents but not in adults. Additionally, MS did not affect the numbers of neurons and glial cells at any age. Both salubrinal and vehicle blunted the expression of UPR markers in juvenile and preadolescent MS rats, often in a treatment-specific manner. Moreover, salubrinal and vehicle generally alleviated the behavioral effects of MS in preadolescent and adult rats. CONCLUSIONS Modulation of ER stress and UPR processes may potentially underlie susceptibility or resilience to ELS.
Collapse
|
5
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
6
|
Onufriev MV, Moiseeva YV, Zhanina MY, Lazareva NA, Gulyaeva NV. A Comparative Study of Koizumi and Longa Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Rats: Early Corticosterone and Inflammatory Response in the Hippocampus and Frontal Cortex. Int J Mol Sci 2021; 22:13544. [PMID: 34948340 PMCID: PMC8703333 DOI: 10.3390/ijms222413544] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023] Open
Abstract
Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1β in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1β beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1β release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic-pituitary-adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.
Collapse
Affiliation(s)
- Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Marina Y. Zhanina
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerov Str., 117485 Moscow, Russia; (M.V.O.); (Y.V.M.); (M.Y.Z.); (N.A.L.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 43 Donskaya Str., 115419 Moscow, Russia
| |
Collapse
|
7
|
Christidis N, Baghernejad P, Deyhim A, Jasim H. Salivary Alpha-Amylase in Experimentally-Induced Muscle Pain. Diagnostics (Basel) 2020; 10:diagnostics10090722. [PMID: 32962201 PMCID: PMC7554812 DOI: 10.3390/diagnostics10090722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
Salivary alpha-amylase (sAA) is a marker of psychological stress and might also be a potential marker for pain-associated stress due its non-invasive, cost-effective, and stress-free collection. The current study aimed to investigate whether the levels of sAA are influenced by experimentally induced muscle pain. In this study, 26 healthy, pain-free and age-matched participants (23.8 ± 2.6 years) were included, 13 women and 13 men. Prior to the experiment, questionnaires assessing health and anxiety were completed. Muscle pain was then induced through intramuscular injection of 0.4 mL hypertonic saline (56.5 mg/mL) into the masseter muscle and unstimulated whole saliva samples were collected at baseline before injection, 2 min, and 15 min after injection. A commercially available colorimetric assay was used to analyze the sAA. Perceived pain and stress were assessed using a 0–100 Numeric Rating Scale for each sample. There were no significant differences in sAA levels prior and after injection of hypertonic saline (p > 0.05) although sAA levels showed a slight decrease during experimentally-induced muscle pain. However, a strong correlation was observed between self-reported pain and perceived level of stress during experimentally-induced muscle pain (r2 = 0.744; p < 0.0001). Furthermore, there was a moderate correlation between the levels of sAA at baseline and during experimental pain (r2 = 0.687; p < 0.0001). In conclusion, this study could not show any association between the levels of sAA and perceived pain and or/stress. However, since a significant strong correlation could be observed between perceived stress and pain intensity, this study indicates that experimentally-induced muscle pain could be used as a stress model.
Collapse
|
8
|
de Matos LO, de Araujo Lima Reis AL, Lopes Guerra LT, de Oliveira Guarnieri L, Moraes MA, Arabe LB, de Souza RP, Pereira GS, Souza BR. Early postnatal l-Dopa treatment causes behavioral alterations in female vs. male young adult Swiss mice. Neuropharmacology 2020; 170:108047. [DOI: 10.1016/j.neuropharm.2020.108047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/28/2020] [Accepted: 03/08/2020] [Indexed: 01/21/2023]
|
9
|
de Matos LO, Reis ALDAL, Guerra LTL, Guarnieri LDO, Moraes MA, Aquino NSS, Szawka RE, Pereira GS, Souza BR. l-Dopa treatment during perinatal development leads to different behavioral alterations in female vs. male juvenile Swiss mice. Pharmacol Biochem Behav 2018; 173:1-14. [DOI: 10.1016/j.pbb.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/26/2022]
|
10
|
The immunomodulatory tellurium compound ammonium trichloro (dioxoethylene-O,O') tellurate reduces anxiety-like behavior and corticosterone levels of submissive mice. Behav Pharmacol 2018; 28:458-465. [PMID: 28590303 DOI: 10.1097/fbp.0000000000000319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a synthetic organotellurium compound with potent immunomodulatory and neuroprotective properties shown to inhibit the function of integrin αvβ3, a presynaptic cell-surface-adhesion receptor. As partial deletion of αvβ3 downregulated reuptake of serotonin by the serotonin transporter, we hypothesized that AS101 may influence pathways regulating anxiety. AS101 was tested in the modulation of anxiety-like behavior using the selectively bred Submissive (Sub) mouse strain that develop anxiety-like behavior in response to an i.p. injection. Mice were treated daily with AS101 (i.p., 125 or 200 μg/kg) or vehicle for 3 weeks, after which their anxiety-like behavior was measured in the elevated plus maze. Animals were then culled for the measurement of serum corticosterone levels by ELISA and hippocampal expression of brain-derived neurotrophic factor (BDNF) by RT-PCR. Chronic administration of AS101 significantly reduced anxiety-like behavior of Sub mice in the elevated plus maze, according to both time spent and entries to open arms, relative to vehicle-treated controls. AS101 also markedly reduced serum corticosterone levels of the treated mice and increased their hippocampal BDNF expression. Anxiolytic-like effects of AS101 may be attributed to the modulation of the regulatory influence integrin of αvβ3 upon the serotonin transporter, suggesting a multifaceted mechanism by which AS101 buffers the hypothalamic-pituitary-adrenal axis response to injection stress, enabling recovery of hippocampal BDNF expression and anxiety-like behavior in Sub mice. Further studies should advance the potential of AS101 in the context of anxiety-related disorders.
Collapse
|
11
|
Fletcher PJ, Li Z, Coen KM, Lê AD. Acquisition of nicotine self-administration in amphetamine and phencyclidine models of schizophrenia: A role for stress? Schizophr Res 2018; 194:98-106. [PMID: 28318841 DOI: 10.1016/j.schres.2017.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023]
Abstract
Nicotine use and dependence is very high in patients with schizophrenia. One possible reason is that altered dopamine or glutamate activity in schizophrenia enhances the reinforcing effectiveness of nicotine. We used animal models to test the hypothesis that a hyperdopaminergic state (induced by repeated intermittent injections of amphetamine) or altered glutamate function (subchronic injection of phencyclidine, PCP) facilitates spontaneous acquisition of nicotine self-administration in rats. In Experiment 1 animals in an amphetamine-induced sensitized state (AISS) did not differ from saline-injected controls in their acquisition and maintenance of nicotine self-administration. This effect was replicated in experiment 2, but it was also found that AISS rats and saline-injected controls showed higher rates of nicotine self-administration compared to uninjected controls. This difference was maintained across several fixed ratio and progressive ratio schedules of reinforcement. In Experiment 3 PCP treated rats and their saline-injected controls did not differ in nicotine self-administration. However, both groups showed consistently increased responding for nicotine on FR and PR schedules compared to an uninjected control group. Injection-stress appeared to influence the outcomes of these experiments in two ways. Firstly, injection stress potentially masked the impact of the AISS and PCP treatment on nicotine self-administration. Secondly, injection stress itself may have been sufficient to induce plastic changes in dopamine and glutamate systems, and these changes enhanced the acquisition and maintenance of nicotine self-administration. Further investigation is needed into the role of stress in the development of nicotine use and dependence, in the aetiology of schizophrenia and in their co-morbidity.
Collapse
Affiliation(s)
- Paul J Fletcher
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Dept. Psychiatry, University of Toronto, Toronto, ON, Canada; Dept. Psychology, University of Toronto, Toronto, ON, Canada.
| | - Zhaoxia Li
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada
| | - Kathleen M Coen
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada
| | - Anh D Lê
- Preclinical Research and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College St., Toronto, Ontario M5T 1R8, Canada; Dept. Psychiatry, University of Toronto, Toronto, ON, Canada; Dept. Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Volumetric response of the adult brain to seizures depends on the developmental stage when systemic inflammation was induced. Epilepsy Behav 2018; 78:280-287. [PMID: 29128467 DOI: 10.1016/j.yebeh.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023]
Abstract
Inflammation has detrimental influences on the developing brain including triggering the epileptogenesis. On the other hand, seizure episodes may induce inflammatory processes and further increase of brain excitability. The present study focuses on the problem whether transitory systemic inflammation during developmental period may have critical importance to functional and/or structural features of the adult brain. An inflammatory status was induced with lipopolysaccharide (LPS) in 6- or 30-day-old rats. Two-month-old rats which experienced the inflammation and untreated controls received injections of pilocarpine, and the intensity of their seizure behavior was rated during a 6-hour period. Three days thereafter, the animals were perfused; their brains were postfixed and subjected to magnetic resonance imaging (MRI) scans. Then, volumes of the brain and of its main regions were assessed. LPS injections alone performed at different developmental stages led to different changes in the volume of adult brain and also to different susceptibility to seizures induced in adulthood. Moreover, the LPS pretreatments modified different volumetric responses of the brain and of its regions to seizures. The responses showed strong inverse correlations with the intensity of seizures but exclusively in rats treated with LPS on postnatal day 30. It could be concluded that generalized inflammation elicited at developmental stages may have strong age-dependent effects on the adult brain regarding not only its susceptibility to action of a seizuregenic agent but also its volumetric reactivity to seizures.
Collapse
|
13
|
Kasten CR, Zhang Y, Boehm SL. Acute and long-term effects of Δ9-tetrahydrocannabinol on object recognition and anxiety-like activity are age- and strain-dependent in mice. Pharmacol Biochem Behav 2017; 163:9-19. [PMID: 29107728 DOI: 10.1016/j.pbb.2017.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
Use of exogenous cannabinoids disrupts the fine-tuned endocannabinoid receptor system, possibly leading to alterations in cognition, memory, and emotional processes that endure long after cannabinoid use has stopped. Long-term adolescent use may uniquely disrupt these behaviors when compared to adult use. The current study explored the acute and long-term behavioral effects of six 10mg/kg Δ9-tetrahydrocannabinol (THC) injections across the adolescent or early adult period in male inbred C57Bl/6J and DBA/2J mice. The acute and prolonged effects of THC on object memory using the novel object recognition task, unconditioned anxiety in the elevated plus maze and open field, and sedative effects in the open field were examined. Acute THC treatment resulted in anxiogenic activity in both strains, but only caused sedation in B6 mice. Repeated THC treatment resulted in a protracted effect on object recognition, but not unconditioned anxiety, assessed 4weeks later. In both strains, an adolescent history of THC treatment disrupted later object recognition. Interestingly, in B6 mice an adult history of THC exposure appeared to rescue a deficit in object recognition observed in vehicle-treated adults. Repeated THC administration also produced a protracted effected on CB1R protein expression. Animals treated with THC in adolescence maintained increased levels of CB1R protein expression compared to their adult THC-treated counterparts at five weeks following the last injection. These results indicate that THC use may have long-lasting effects with adolescence being a unique period of susceptibility.
Collapse
Affiliation(s)
- C R Kasten
- Department of Psychology, Indiana University - Purdue University - Indianapolis, 402 N Blackford St, LD 124, Indianapolis, IN 46202, United States.
| | - Y Zhang
- Department of Psychology, Indiana University - Purdue University - Indianapolis, 402 N Blackford St, LD 124, Indianapolis, IN 46202, United States
| | - S L Boehm
- Department of Psychology, Indiana University - Purdue University - Indianapolis, 402 N Blackford St, LD 124, Indianapolis, IN 46202, United States; Indiana Alcohol Research Center, 545 Barnhill Drive EH 317, Indianapolis, IN, United States.
| |
Collapse
|