Huber F, Lang HP, Marten A, Bielicki JA, Meyer E, Gerber C. Ultra-Sensitive Biosensors for Medical Applications Based on Nanomechanics: From Detection of Synthetic Biomolecules to Analysis of Sepsis in Pediatric Patients.
BIOSENSORS 2025;
15:217. [PMID:
40277531 DOI:
10.3390/bios15040217]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025]
Abstract
Recent advancements in nanomechanical microcantilever biosensors open new possibilities for clinical applications, permitting precise analysis of molecular interactions. The technology enables tracking gene expression, molecular conformational changes, antibody binding and antibiotic resistance. In particular, hybridization of DNA or RNA extracted from biopsies and whole blood from patients has led to significant advancements in diagnostics of critical medical conditions, e.g., cancer, bacteraemia and sepsis, utilizing rapid, sensitive, and label-free detection. Direct diagnosis from patient samples is a decisive advantage over competitive methods circumventing elaborate and time-consuming purification, amplification and cultivation procedures prior to analysis. Here, recent developments are presented from simple DNA hybridization of synthesized oligonucleotides to RNA material obtained from patients' blood samples, highlighting technological advancements in diagnostic applications, such as detection of pathogens and disease biomarkers. We envisage our method to be a significant input to rapid, early and sensitive diagnosis directly from patients' blood without requirements for amplification or cultivation. This would represent a paradigm shift in diagnostics, as no competing method currently exists.
Collapse