1
|
Liang A, Fang Y, Ye L, Meng J, Wang X, Chen J, Xu X. Signaling pathways in hair aging. Front Cell Dev Biol 2023; 11:1278278. [PMID: 38033857 PMCID: PMC10687558 DOI: 10.3389/fcell.2023.1278278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Hair follicle (HF) homeostasis is regulated by various signaling pathways. Disruption of such homeostasis leads to HF disorders, such as alopecia, pigment loss, and hair aging, which is causing severe health problems and aesthetic concerns. Among these disorders, hair aging is characterized by hair graying, hair loss, hair follicle miniaturization (HFM), and structural changes to the hair shaft. Hair aging occurs under physiological conditions, while premature hair aging is often associated with certain pathological conditions. Numerous investigations have been made to determine the mechanisms and explore treatments to prevent hair aging. The most well-known hypotheses about hair aging include oxidative stress, hormonal disorders, inflammation, as well as DNA damage and repair defects. Ultimately, these factors pose threats to HF cells, especially stem cells such as hair follicle stem cells, melanocyte stem cells, and mesenchymal stem cells, which hamper hair regeneration and pigmentation. Here, we summarize previous studies investigating the above mechanisms and the existing therapeutic methods for hair aging. We also provide insights into hair aging research and discuss the limitations and outlook.
Collapse
Affiliation(s)
- Aishi Liang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yingshan Fang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Lan Ye
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jianda Meng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinsong Chen
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| | - Xuejuan Xu
- Endocrinology Department, First People’s Hospital of Foshan, Foshan, China
| |
Collapse
|
2
|
Nuruev M, Sakibaev K, Dzholdosheva G, Maksimova K, Kanymgul AK. Features of circumference sizes in women of different constitutional groups. Clin Physiol Funct Imaging 2023; 43:40-46. [PMID: 36184808 DOI: 10.1111/cpf.12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The constitution of a person determines their physical condition and the level of metabolism in the body. For this reason, the characteristic of a person's somatotype (body type) is important for assessing their health and is used to determine the norm of physical development. The purpose of this study was to investigate and compare the features of circumference sizes in women of the Kyrgyz Republic with different body types and age groups. METHODS A total of 1028 healthy women aged 16-55 years living in the city of Osh and its suburbs were examined. Physical development was assessed using the method of complex anthropometry and somatotyping. RESULTS The mesosomal and megalosomal groups are more common in women of the third age category, while in the leptosomal group, the number of women of different age categories was approximately the same. In women aged 21-35 years old, the average value of the chest circumference index was 1.1 times greater than in girls aged 16-20 years old, the waist circumference was 1.1 times greater and the gluteal circumference was also more than 1.03 times greater. In women of the third age category, the above indicators increase by 1.09, 1.09 and 1.05 times, respectively, in comparison with girls from the first category. CONCLUSION The analysis of somatotypes and circumference sizes of Kyrgyz women of different ages suggests that there is a relative dependence of the measured parameters on the age and constitution of the body.
Collapse
Affiliation(s)
- Mirlan Nuruev
- Department of Anatomy, Histology and Normal Physiology, Osh State University, Osh, Kyrgyz Republic
| | - Kyialbek Sakibaev
- Department of Anatomy, Histology and Normal Physiology, Osh State University, Osh, Kyrgyz Republic
| | - Gulay Dzholdosheva
- Department of Histology and Pathological Anatomy, Osh State University, Osh, Kyrgyz Republic
| | - Kanyshai Maksimova
- Department of Anatomy, Histology and Normal Physiology, Osh State University, Osh, Kyrgyz Republic
| | - Asanbek Kyzy Kanymgul
- Department of Anatomy, Histology and Normal Physiology, Osh State University, Osh, Kyrgyz Republic
| |
Collapse
|
3
|
Liu Y, Cao B, Hu L, Ye J, Tian W, He X. The Dual Roles of MAGE-C2 in p53 Ubiquitination and Cell Proliferation Through E3 Ligases MDM2 and TRIM28. Front Cell Dev Biol 2022; 10:922675. [PMID: 35927984 PMCID: PMC9344466 DOI: 10.3389/fcell.2022.922675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor p53 is critical for the maintenance of genome stability and protection against tumor malignant transformation, and its homeostasis is usually regulated by ubiquitination. MDM2 is a major E3 ligase of p53 ubiquitination, and its activity is enhanced by TRIM28. TRIM28 also independently ubiquitinates p53 as an E3 ligase activated by MAGE-C2. Moreover, MAGE-C2 is highly expressed in various cancers, but the detailed mechanisms of MAGE-C2 involved in MDM2/TRIM28-mediated p53 ubiquitination remain unknown. Here, we found that MAGE-C2 directly interacts with MDM2 through its conserved MHD domain to inhibit the activity of MDM2 on p53 ubiquitination. Furthermore, TRIM28 acts as an MAGE-C2 binding partner and directly competes with MAGE-C2 for MDM2 interaction, thus releasing the inhibitory role of MAGE-C2 and promoting p53 ubiquitination. MAGE-C2 suppresses cell proliferation in TRIM28-deficient cells, but the overexpression of TRIM28 antagonizes the inhibitory role of MAGE-C2 and accumulates p53 ubiquitination to promote cell proliferation. This study clarified the molecular link of MAGE-C2 in two major E3 systems MDM2 and TRIM28 on p53 ubiquitination. Our results revealed the molecular function of how MAGE-C2 and TRIM28 contribute to p53 ubiquitination and cell proliferation, in which MAGE-C2 acts as a potential inhibitor of MDM2 and TRIM28 is a vital regulator for MAGE-C2 function in p53 protein level and cell proliferation. This work would be helpful to understand the regulation mechanism of tumor suppressor p53.
Collapse
|
4
|
Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation. Int J Mol Sci 2022; 23:ijms23126655. [PMID: 35743097 PMCID: PMC9223561 DOI: 10.3390/ijms23126655] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
Skin aging is a multi-factorial process that affects nearly every aspect of skin biology and function. With age, an impairment of structures, quality characteristics, and functions of the dermal extracellular matrix (ECM) occurs in the skin, which leads to disrupted functioning of dermal fibroblasts (DFs), the main cells supporting morphofunctional organization of the skin. The DF functioning directly depends on the state of the surrounding collagen matrix (CM). The intact collagen matrix ensures proper adhesion and mechanical tension in DFs, which allows these cells to maintain collagen homeostasis while ECM correctly regulates cellular processes. When the integrity of CM is destroyed, mechanotransduction is disrupted, which is accompanied by impairment of DF functioning and destruction of collagen homeostasis, thereby contributing to the progression of aging processes in skin tissues. This article considers in detail the processes of skin aging and associated changes in the skin layers, as well as the mechanisms of these processes at the molecular level.
Collapse
|
5
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Hajiyeva N, Gafarov I, Hajiyeva A, Sultanova N, Panahova T. Forecasting of atopic dermatitis in newborns. Indian J Dermatol 2022; 67:311. [DOI: 10.4103/ijd.ijd_933_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Grenier A, Legault J, Pichette A, Jean L, Bélanger A, Pouliot R. Antioxidant, Anti-Inflammatory, and Anti-Aging Potential of a Kalmia angustifolia Extract and Identification of Some Major Compounds. Antioxidants (Basel) 2021; 10:1373. [PMID: 34573004 PMCID: PMC8469236 DOI: 10.3390/antiox10091373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Skin aging is the most visible element of the aging process, giving rise to a major concern for many people. Plants from the Ericaceae family generally have antioxidant and anti-inflammatory properties, making them potential anti-aging active ingredients. This study aimed to evaluate the safety and anti-aging efficacy of a Kalmia angustifolia extract using reconstructed skin substitutes. The safety evaluation was performed using a 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the efficacy was determined by assessing antioxidant and anti-inflammatory activity and analyzing skin substitutes reconstructed according to the self-assembly method by histology and immunofluorescence staining (elastin, collagen-1, collagen-3, aquaporin-3). The cell viability assay established the safety of the extract at a concentration up to 200 μg/mL. The Oxygen Radical Absorbance Capacity (ORAC) assay and a cell-based assay using 2',7'-dichlorofluorescein-diacetate (DCFH-DA) revealed a strong antioxidant activity with an ORAC value of 16 µmol Trolox Equivalent/mg and a half-maximal inhibitory concentration (IC50) of 0.37 ± 0.02 μg/mL, while an interesting anti-inflammatory activity was found in the inhibition of NO production, with an inhibition percentage of NO production of 49 ± 2% at 80 µg/mL. The isolation and characterization of the extract allowed the identification of compounds that could be responsible for these biological activities, with two of them being identified for the first time in K. angustifolia: avicularin and epicatechin-(2β-O-7, 4β-6)-ent-epicatechin. Histological analyses of skin substitutes treated with the extract showed an increase in dermal thickness compared with the controls. K. angustifolia extract enhanced the expression of elastin and collagen-1, which are usually decreased with skin aging. These results suggest that K. angustifolia has promising antioxidant efficacy and anti-aging potential.
Collapse
Affiliation(s)
- Alexe Grenier
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec Université Laval, Québec, QC GIJ 1Z4, Canada;
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jean Legault
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (J.L.); (A.P.); (L.J.); (A.B.)
| | - André Pichette
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (J.L.); (A.P.); (L.J.); (A.B.)
| | - Lorry Jean
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (J.L.); (A.P.); (L.J.); (A.B.)
| | - Audrey Bélanger
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada; (J.L.); (A.P.); (L.J.); (A.B.)
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec Université Laval, Québec, QC GIJ 1Z4, Canada;
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Neurocosmetics in Skincare—The Fascinating World of Skin–Brain Connection: A Review to Explore Ingredients, Commercial Products for Skin Aging, and Cosmetic Regulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8030066] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The “modern” cosmetology industry is focusing on research devoted to discovering novel neurocosmetic functional ingredients that could improve the interactions between the skin and the nervous system. Many cosmetic companies have started to formulate neurocosmetic products that exhibit their activity on the cutaneous nervous system by affecting the skin’s neuromediators through different mechanisms of action. This review aims to clarify the definition of neurocosmetics, and to describe the features of some functional ingredients and products available on the market, with a look at the regulatory aspect. The attention is devoted to neurocosmetic ingredients for combating skin stress, explaining the stress pathways, which are also correlated with skin aging. “Neuro-relaxing” anti-aging ingredients derived from plant extracts and neurocosmetic strategies to combat inflammatory responses related to skin stress are presented. Afterwards, the molecular basis of sensitive skin and the suitable neurocosmetic ingredients to improve this problem are discussed. With the aim of presenting the major application of Botox-like ingredients as the first neurocosmetics on the market, skin aging is also introduced, and its theory is presented. To confirm the efficacy of the cosmetic products on the market, the concept of cosmetic claims is discussed.
Collapse
|
9
|
Berezutsky MA, Durnova NA, Vlasova IA. Experimental and Clinical Studies of Mechanisms of the Antiaging Effects of Chemical Compounds in Astragalus membranaceus (Review). ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020020046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 2019; 54:61-83. [PMID: 30822165 PMCID: PMC6424622 DOI: 10.1080/10409238.2019.1570075] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
The aging process results in significant epigenetic changes at all levels of chromatin and DNA organization. These include reduced global heterochromatin, nucleosome remodeling and loss, changes in histone marks, global DNA hypomethylation with CpG island hypermethylation, and the relocalization of chromatin modifying factors. Exactly how and why these changes occur is not fully understood, but evidence that these epigenetic changes affect longevity and may cause aging, is growing. Excitingly, new studies show that age-related epigenetic changes can be reversed with interventions such as cyclic expression of the Yamanaka reprogramming factors. This review presents a summary of epigenetic changes that occur in aging, highlights studies indicating that epigenetic changes may contribute to the aging process and outlines the current state of research into interventions to reprogram age-related epigenetic changes.
Collapse
Affiliation(s)
- Alice E. Kane
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - David A. Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Gunin AG, Golubtsova NN, Subbotkina NO, Subbotkin AS. The Influence of Metformin on Age-Related Changes in the Number and Proliferation of Dermal Fibroblasts in Mice. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|