1
|
Recent Trends in Research on the Genetic Diversity of Plants: Implications for Conservation. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11040062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetic diversity and its distribution, both within and between populations, may be determined by micro-evolutionary processes, such as the demographic history of populations, natural selection, and gene flow. In plants, indices of genetic diversity (e.g., k, h and π) and structure (e.g., FST) are typically inferred from sequences of chloroplast markers. Given the recent advances and popularization of molecular techniques for research in population genetics, phylogenetics, phylogeography, and ecology, we adopted a scientometric approach to compile evidence on the recent trends in the use of cpDNA sequences as markers for the analysis of genetic diversity in botanical studies, over the years. We also used phylogenetic modeling to assess the relative contribution of relatedness or ecological and reproductive characters to the genetic diversity of plants. We postulated that genetic diversity could be defined not only by microevolutionary factors and life history traits, but also by relatedness, so that species more closely related phylogenetically would have similar genetic diversities. We found a clear tendency for an increase in the number of studies over time, confirming the hypothesis that the advances in the area of molecular genetics have supported the accumulation of data on the genetic diversity of plants. However, we found that the vast majority of these data have been produced by Chinese authors, and refer specifically to populations of Chinese plants. Most of the data on genetic diversity have been obtained for species in the International Union for Conservation of Nature (IUCN) category NE (Not Evaluated), which indicates a relative lack of attention on threatened species. In general, we observed very high FST values in the groups analyzed and, as we focused primarily on species that have not been evaluated by the IUCN, the number of plant species that are threatened with extinction may be much greater than that indicated by the listing of this organization. We also found that the number of haplotypes (k) was influenced by the type of geographic distribution of the plant, while haplotype diversity (h) was affected by the type of flower, and the fixation index (FST), by the type of habitat. The plant species most closely-related phylogenetically have similar levels of genetic diversity. Overall, then, it will important to consider phylogenetic dependence in future studies that evaluate the effects of life-history traits on plant genetic diversity.
Collapse
|
2
|
Tsuda Y, Chen J, Stocks M, Källman T, Sønstebø JH, Parducci L, Semerikov V, Sperisen C, Politov D, Ronkainen T, Väliranta M, Vendramin GG, Tollefsrud MM, Lascoux M. The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): cryptic refugia as stepping stones to the west? Mol Ecol 2016; 25:2773-89. [PMID: 27087633 DOI: 10.1111/mec.13654] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/23/2016] [Accepted: 04/09/2016] [Indexed: 01/17/2023]
Abstract
Boreal species were repeatedly exposed to ice ages and went through cycles of contraction and expansion while sister species alternated periods of contact and isolation. The resulting genetic structure is consequently complex, and demographic inferences are intrinsically challenging. The range of Norway spruce (Picea abies) and Siberian spruce (Picea obovata) covers most of northern Eurasia; yet their geographical limits and histories remain poorly understood. To delineate the hybrid zone between the two species and reconstruct their joint demographic history, we analysed variation at nuclear SSR and mitochondrial DNA in 102 and 88 populations, respectively. The dynamics of the hybrid zone was analysed with approximate Bayesian computation (ABC) followed by posterior predictive structure plot reconstruction and the presence of barriers across the range tested with estimated effective migration surfaces. To estimate the divergence time between the two species, nuclear sequences from two well-separated populations of each species were analysed with ABC. Two main barriers divide the range of the two species: one corresponds to the hybrid zone between them, and the other separates the southern and northern domains of Norway spruce. The hybrid zone is centred on the Urals, but the genetic impact of Siberian spruce extends further west. The joint distribution of mitochondrial and nuclear variation indicates an introgression of mitochondrial DNA from Norway spruce into Siberian spruce. Overall, our data reveal a demographic history where the two species interacted frequently and where migrants originating from the Urals and the West Siberian Plain recolonized northern Russia and Scandinavia using scattered refugial populations of Norway spruce as stepping stones towards the west.
Collapse
Affiliation(s)
- Yoshiaki Tsuda
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden.,CNR, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Michael Stocks
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Thomas Källman
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | | | - Laura Parducci
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Vladimir Semerikov
- Urals Division of the Russian Academy of Sciences, Institute of Plant and Animal Ecology, 8 Marta Str., 202, 620144, Ekaterinburg, Russia
| | - Christoph Sperisen
- Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903, Birmendsdorf, Switzerland
| | - Dmitry Politov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin str. 3, 119991, Moscow, Russia
| | - Tiina Ronkainen
- Environmental Change Research Unit (ECRU), Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014, Helsinki, Finland
| | - Minna Väliranta
- Environmental Change Research Unit (ECRU), Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014, Helsinki, Finland
| | - Giovanni Giuseppe Vendramin
- CNR, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|