1
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Yang T, Sim KY, Ko GH, Ahn JS, Kim HJ, Park SG. FAM167A is a key molecule to induce BCR-ABL-independent TKI resistance in CML via noncanonical NF-κB signaling activation. J Exp Clin Cancer Res 2022; 41:82. [PMID: 35241148 PMCID: PMC8892744 DOI: 10.1186/s13046-022-02298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/21/2022] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND BCR-ABL-independent drug resistance is a barrier to curative treatment of chronic myeloid leukemia (CML). However, the molecular pathways underlying BCR-ABL-independent tyrosine kinase inhibitor (TKI) resistance remain unclear. METHODS In silico bioinformatic analysis was performed to identify the most active transcription factor and its inducer that contribute to BCR-ABL-independent TKI resistance. Tandem mass spectrometry analysis was performed to identify the receptor for the noncanonical NF-κB activator FAM167A. In vitro and in vivo mouse experiments revealed detailed molecular insights into the functional role of the FAM167A-desmoglein-1 (DSG1) axis in BCL-ABL-independent TKI resistance. CML cells derived from CML patients were analyzed using quantitative reverse transcription PCR and flow cytometry. RESULTS We found that NF-κB had the greatest effect on differential gene expression of BCR-ABL-independent TKI-resistant CML cells. Moreover, we found that the previously uncharacterized protein FAM167A activates the noncanonical NF-κB pathway and induces BCR-ABL-independent TKI resistance. Molecular analyses revealed that FAM167A activates the noncanonical NF-κB pathway by binding to the cell adhesion protein DSG1 to upregulate NF-κB-inducing kinase (NIK) by blocking its ubiquitination. Neutralization of FAM167A in a mouse tumor model reduced noncanonical NF-κB activity and restored sensitivity of cells to TKIs. Furthermore, FAM167A and surface DSG1 levels were highly upregulated in CD34+ CML cells from patients with BCR-ABL-independent TKI-resistant disease. CONCLUSIONS These results reveal that FAM167A acts as an essential factor for BCR-ABL-independent TKI resistance in CML by activating the noncanonical NF-κB pathway. In addition, FAM167A may serve as an important target and biomarker for BCR-ABL-independent TKI resistance.
Collapse
MESH Headings
- Animals
- Apoptosis
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- NF-kappa B/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Proteins/metabolism
Collapse
Affiliation(s)
- Taewoo Yang
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Kyu-Young Sim
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Gwang-Hoon Ko
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 58128 Hwasun, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 58128 Hwasun, Republic of Korea
| | - Sung-Gyoo Park
- Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Republic of Korea
| |
Collapse
|
3
|
Liu D, Qin Z, Wei M, Kong D, Zheng Q, Bai S, Lin S, Zhang Z, Ma Y. Genome-Wide Analyses of Heat Shock Protein Superfamily Provide New Insights on Adaptation to Sulfide-Rich Environments in Urechis unicinctus (Annelida, Echiura). Int J Mol Sci 2022; 23:2715. [PMID: 35269857 PMCID: PMC8910992 DOI: 10.3390/ijms23052715] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
The intertidal zone is a transitional area of the land-sea continuum, in which physical and chemical properties vary during the tidal cycle and highly toxic sulfides are rich in sediments due to the dynamic regimes. As a typical species thriving in this habitat, Urechis unicinctus presents strong sulfide tolerance and is expected to be a model species for sulfide stress research. Heat shock proteins (HSPs) consist of a large group of highly conserved molecular chaperones, which play important roles in stress responses. In this study, we systematically analyzed the composition and expression of HSPs in U. unicinctus. A total of eighty-six HSP genes from seven families were identified, in which two families, including sHSP and HSP70, showed moderate expansion, and this variation may be related to the benthic habitat of the intertidal zone. Furthermore, expression analysis revealed that almost all the HSP genes in U. unicinctus were significantly induced under sulfide stress, suggesting that they may be involved in sulfide stress response. Weighted gene co-expression network analysis (WGCNA) showed that 12 HSPs, including 5 sHSP and 4 HSP70 family genes, were highly correlated with the sulfide stress response which was distributed in steelblue and green modules. Our data indicate that HSPs, especially sHSP and HSP70 families, may play significant roles in response to sulfide stress in U. unicinctus. This systematic analysis provides valuable information for further understanding of the function of the HSP gene family for sulfide adaptation in U. unicinctus and contributes a better understanding of the species adaptation strategies of marine benthos in the intertidal zone.
Collapse
Affiliation(s)
- Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Dexu Kong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Qiaojun Zheng
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Siyu Lin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (D.L.); (Z.Q.); (M.W.); (D.K.); (Q.Z.); (S.B.); (S.L.)
| |
Collapse
|
4
|
Hagberg N, Lundtoft C, Rönnblom L. Immunogenetics in systemic lupus erythematosus: Transitioning from genetic associations to cellular effects. Scand J Immunol 2020; 92:e12894. [DOI: 10.1111/sji.12894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Niklas Hagberg
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Christian Lundtoft
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| | - Lars Rönnblom
- Rheumatology and Science for Life Laboratories Department of Medical Sciences Uppsala University Uppsala Sweden
| |
Collapse
|
5
|
Mofors J, Arkema EV, Björk A, Westermark L, Kvarnström M, Forsblad-d'Elia H, Magnusson Bucher S, Eriksson P, Mandl T, Nordmark G, Wahren-Herlenius M. Infections increase the risk of developing Sjögren's syndrome. J Intern Med 2019; 285:670-680. [PMID: 30892751 DOI: 10.1111/joim.12888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Environmental factors have been suggested in the pathogenesis of rheumatic diseases. We here investigated whether infections increase the risk of developing primary Sjögren's syndrome (pSS). METHODS Patients with pSS in Sweden (n = 945) and matched controls from the general population (n = 9048) were included, and data extracted from the National Patient Register to identify infections occurring before pSS diagnosis during a mean observational time of 16.0 years. Data were analysed using conditional logistic regression models. Sensitivity analyses were performed by varying exposure definition and adjusting for previous health care consumption. RESULTS A history of infection associated with an increased risk of pSS (OR 1.9, 95% CI 1.6-2.3). Infections were more prominently associated with the development of SSA/SSB autoantibody-positive pSS (OR 2.7, 95% CI 2.0-3.5). When stratifying the analysis by organ system infected, respiratory infections increased the risk of developing pSS, both in patients with (OR 2.9, 95% CI 1.8-4.7) and without autoantibodies (OR 2.1, 95% CI 1.1-3.8), whilst skin and urogenital infections only significantly associated with the development of autoantibody-positive pSS (OR 3.2, 95% CI 1.8-5.5 and OR 2.7, 95% CI 1.7-4.2). Furthermore, a dose-response relationship was observed for infections and a risk to develop pSS with Ro/SSA and La/SSB antibodies. Gastrointestinal infections were not significantly associated with a risk of pSS. CONCLUSIONS Infections increase the risk of developing pSS, most prominently SSA/SSB autoantibody-positive disease, suggesting that microbial triggers of immunity may partake in the pathogenetic process of pSS.
Collapse
Affiliation(s)
- J Mofors
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - E V Arkema
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Björk
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - L Westermark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Kvarnström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H Forsblad-d'Elia
- Department of Public Health and Clinical Medicine, Rheumatology, Umeå University, Umeå, Sweden
| | - S Magnusson Bucher
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - P Eriksson
- Division of Rheumatology, Department of Clinical Experimental Medicine, Linköping University, Linköping, Sweden
| | - T Mandl
- Department of Clinical Sciences, Malmö, Rheumatology, Lund University, Malmö, Sweden
| | - G Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Wahren-Herlenius
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|