1
|
Le Maître M, Guerrier T, Sanges S, Chepy A, Collet A, Launay D. Beyond circulating B cells: Characteristics and role of tissue-infiltrating B cells in systemic sclerosis. Autoimmun Rev 2025; 24:103782. [PMID: 40010623 DOI: 10.1016/j.autrev.2025.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
B cells play a key role in the pathophysiology of systemic sclerosis (SSc). While they are less characterized than their circulating counterparts, tissue-infiltrating B cells may have a more direct pathological role in tissues. In this review, we decipher the multiple evidence of B cells infiltration in the skin and lungs of SSc patients and animal models of SSc but also of other chronic fibrotic diseases with similar pathological mechanisms such as chronic graft versus host disease, idiopathic pulmonary fibrosis or morphea. We also recapitulate the current knowledge about mechanisms of B cells infiltration and their functions in tissues. Finally, we discuss B cell targeted therapies, and their specific impact on infiltrated B cells. Understanding the local consequences of infiltrating B cells is an important step for a better management of patients and the improvement of therapies in SSc.
Collapse
Affiliation(s)
- Mathilde Le Maître
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France.
| | - Thomas Guerrier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Sébastien Sanges
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| | - Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| | - Aurore Collet
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| |
Collapse
|
2
|
Xiong Y, Li X, Sun B, Zhang J, Wu X, Guo F. Abnormal collagen deposition mediated by cartilage oligomeric matrix protein in the pathogenesis of oral submucous fibrosis. Int J Oral Sci 2025; 17:25. [PMID: 40148275 PMCID: PMC11950347 DOI: 10.1038/s41368-025-00355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Abnormal accumulation of collagen fibrils is a hallmark feature of oral submucous fibrosis (OSF). However, the precise characteristics and underlying mechanisms remain unclear, impeding the advancement of potential therapeutic approaches. Here, we observed that collagen I, the main component of the extracellular matrix, first accumulated in the lamina propria and subsequently in the submucosa of OSF specimens as the disease progressed. Using RNA-seq and Immunofluorescence in OSF specimens, we screened the cartilage oligomeric matrix protein (COMP) responsible for the abnormal collagen accumulation. Genetic COMP deficiency reduced arecoline-stimulated collagen I deposition significantly in vivo. In comparison, both COMP and collagen I were upregulated under arecoline stimulation in wild-type mice. Human oral buccal mucosal fibroblasts (hBMFs) also exhibited increased secretion of COMP and collagen I after stimulation in vitro. COMP knockdown in hBMFs downregulates arecoline-stimulated collagen I secretion. We further demonstrated that hBMFs present heterogeneous responses to arecoline stimulation, of which COMP-positive fibroblasts secrete more collagen I. Since COMP is a molecular bridge with Fibril-associated collagens with Interrupted Triple helices (FACIT) in the collagen network, we further screened and identified collagen XIV, a FACIT member, co-localizing with both COMP and collagen I. Collagen XIV expression increased under arecoline stimulation in wild-type mice, whereas it was hardly expressed in the Comp-/- mice, even with under stimulation. In summary, we found that COMP may mediates abnormal collagen I deposition by functions with collagen XIV during the progression of OSF, suggesting its potential to be targeted in treating OSF.
Collapse
Affiliation(s)
- Yafei Xiong
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xuechun Li
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Bincan Sun
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoshan Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.
| | - Feng Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Xu X, Fu J, Yang G, Chen Z, Chen S, Yuan G. Dentin sialoprotein promotes endothelial differentiation of dental pulp stem cells through DSP aa34-50-endoglin-AKT1 axis. J Biol Chem 2025; 301:108380. [PMID: 40049415 PMCID: PMC11997338 DOI: 10.1016/j.jbc.2025.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
Dentin sialoprotein (DSP), a major dentin extracellular matrix noncollagenous protein, is well recognized as an important regulator for dentinogenesis. DSP as a secreted protein can interact with membrane receptors, activate intracellular signaling, and initiate the odontoblastic differentiation of dental papilla cells. In a recent study, we have demonstrated that DSP can induce the endothelial differentiation of dental pulp stem cells (DPSCs), a type of tooth pulp-derived multipotent stem cells, dependent on membrane receptor endoglin (ENG). However, the intimate mechanisms by which DSP-ENG association facilitates the endothelial differentiation of DPSCs remain enigmatic. Here, we find that the amino acid (aa) residues 34-50 of DSP (DSPaa34-50) is responsible for its association with ENG using a series of co-immunoprecipitation assays. Immunofluorescent staining and in situ proximity ligation assay demonstrate that overexpressed ENG in human embryonic kidney 293T cells shows codistribution and proximity ligation assay signals to the supplemented DSPaa34-50 protein but not to DSP without aa34-50 (DSPΔ34-50) on cell surfaces. Moreover, the zona pellucida domain of ENG mediates its association with DSPaa34-50. Further experiments indicate that DSPaa34-50 exhibits equivalent effects to the full-length DSP on the migration and endothelial differentiation of DPSCs dependent on ENG but DSPΔ34-50 does not. Mechanistically, DSPaa34-50 activates AKT1 and triggers the expression of blood vessel development-related genes in DPSCs. Multiple experiments demonstrate that AKT1 inhibition suppresses the DSPaa34-50-induced migration and endothelial differentiation of DPSCs. Thus, AKT1 mediates the cellular and molecular functions of DSPaa34-50-ENG association. Collectively, these findings identify that DSP promotes the endothelial differentiation of DPSCs through the DSPaa34-50-ENG-AKT1 signaling axis.
Collapse
Affiliation(s)
- Ximin Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China
| | - Jing Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shuo Chen
- Department of Developmental Dentistry, School of Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Chen Y, Gong Y, Shi M, Zhu H, Tang Y, Huang D, Wang W, Shi C, Xia X, Zhang Y, Liu J, Huang J, Liu M, Chen H, Ma Y, Wang Z, Wang L, Tu W, Zhao Y, Lin J, Jin L, Distler JH, Wu W, Wang J, Shi X. miR-3606-3p alleviates skin fibrosis by integratively suppressing the integrin/FAK, p-AKT/p-ERK, and TGF-β signaling cascades. J Adv Res 2024:S2090-1232(24)00546-0. [PMID: 39571732 DOI: 10.1016/j.jare.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION Fibroblast abnormalities are crucial causes of skin fibrosis, including systemic sclerosis (SSc) and keloids. However, their mechanisms, including underlying microRNA regulatory mechanisms, remain elusive. OBJECTIVES This study aimed to evaluate the roles, mechanisms, and therapeutic potential of miR-3606-3p in regulating multiple fibroblast abnormalities. METHODS The miR-3606-3p levels were evaluated in skin tissues and primary fibroblasts. RNA-seq and luciferase assays were employed to identify miR-3606-3p targets. Collagen contraction, western blotting, in vivo imaging, and real-time cellular analysis were used to assess fibroblast abnormalities. The therapeutic potential of miR-3606-3p was evaluated in mice. RESULTS MiR-3606-3p decreased in skin tissues (SSc: Fold Change (FC) = - 2.95, P = 0.0101; keloid: FC = - 3.42, P < 0.0001) and primary fibroblasts (SSc: FC = - 12.74, P = 0.0278; keloid: FC = - 2.08, P = 0.0021) from skin fibrosis patients, and negatively correlated with disease severity. Mechanistically, miR-3606-3p targeted the 3'-untranslated regions (3'-UTRs) of Integrin αV (ITGAV), GRB2-associated binding protein 1 (GAB1), and transforming growth factor beta receptor 2 (TGFBR2), all of these three targets increased in skin fibrosis. Simultaneously, miR-3606-3p inhibited fibroblast's fibrogenesis, migration, inflammation, and proliferation by inhibiting ITGAV/integrin/FAK, GAB1/p-AKT/p-ERK, and TGFBR2/p-SMAD2/3 signaling. ITGAV-mediated integrin/FAK signaling unidirectionally activated the p-AKT/p-ERK and p-SMAD2/3 pathways. Knockdown of GAB1 and TGFRB2 reduced ITGAV-induced p-AKT/p-ERK and p-SMAD2/3 activities. MiR-3606-3p, si-ITGAV, si-GAB1, and si-TGFBR2 exhibited significant inhibition of fibrogenesis and migration. Inflammation was primarily inhibited by si-ITGAV and si-GAB1, while proliferation was primarily inhibited by si-TGFBR2. Moreover, miR-3606-3p significantly attenuates skin fibrosis in keloid-bearing mice. CONCLUSIONS MiR-3606-3p is downregulated in skin fibrosis. Moreover, it negatively correlates with disease severity. Functionally, miR-3606-3p inhibits fibrogenesis, migration, inflammation, and proliferation of fibroblasts. Mechanistically, miR-3606-3p inhibits ITGAV, GAB1, and TGFBR2 by targeting their 3'-UTRs. ITGAV-, GAB1-, and TGFBR2-activated integrin/AKT/ERK/SMAD2/3 signaling induced fibroblast abnormalities. In vivo, miR-3606-3p inhibits skin fibrosis in mice. Therefore, the multi-targeting, multi-phenotypic regulatory properties of miR-3606-3p suggest its potential utility in clinical treatment.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yiyi Gong
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Haoxing Zhu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Delin Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chenyi Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xueyi Xia
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Ying Zhang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jianlan Liu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jia Huang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Mengguo Liu
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Ziyu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Wang
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jörg Hw Distler
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China; Department of Dermatology, Jing'an District Central Hospital, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, and Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Deptartment of Allergy and Immunology, Huashan Hospital, and Research Center of Allergy and Diseases, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China.
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Wang Y, Li HT, Liu G, Jiang CS, Ni YH, Zeng JH, Lin X, Wang QY, Li DZ, Wang W, Zeng XP. COMP promotes pancreatic fibrosis by activating pancreatic stellate cells through CD36-ERK/AKT signaling pathways. Cell Signal 2024; 118:111135. [PMID: 38479555 DOI: 10.1016/j.cellsig.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Pancreatic fibrosis is one of the most important pathological features of chronic pancreatitis (CP) and pancreatic stellate cells (PSCs) are the key cells of fibrosis. As an extracellular matrix (ECM) glycoprotein, cartilage oligomeric matrix protein (COMP) is critical for collagen assembly and ECM stability and recent studies showed that COMP exert promoting fibrosis effect in the skin, lungs and liver. However, the role of COMP in activation of PSCs and pancreatic fibrosis remain unclear. We aimed to investigate the role and specific mechanisms of COMP in regulating the profibrotic phenotype of PSCs and pancreatic fibrosis. METHODS ELISA method was used to determine serum COMP in patients with CP. Mice model of CP was established by repeated intraperitoneal injection of cerulein and pancreatic fibrosis was evaluated by Hematoxylin-Eosin staining (H&E) and Sirius red staining. Immunohistochemical staining was used to detect the expression changes of COMP and fibrosis marker such as α-SMA and Fibronectin in pancreatic tissue of mice. Cell Counting Kit-8, Wound Healing and Transwell assessed the proliferation and migration of human pancreatic stellate cells (HPSCs). Western blotting, qRT-PCR and immunofluorescence staining were performed to detect the expression of fibrosis marker, AKT and MAPK family proteins in HPSCs. RNA-seq omics analysis as well as small interfering RNA of COMP, recombinant human COMP (rCOMP), MEK inhibitors and PI3K inhibitors were used to study the effect and mechanism of COMP on activation of HPSCs. RESULTS ELISA showed that the expression of COMP significantly increased in the serum of CP patients. H&E and Sirius red staining analysis showed that there was a large amount of collagen deposition in the mice in the CP model group and high expression of COMP, α-SMA, Fibronectin and Vimentin were observed in fibrotic tissues. TGF-β1 stimulates the activation of HPSCs and increases the expression of COMP. Knockdown of COMP inhibited proliferation and migration of HPSCs. Further, RNA-seq omics analysis and validation experiments in vitro showed that rCOMP could significantly promote the proliferation and activation of HPSCs, which may be due to promoting the phosphorylation of ERK and AKT through membrane protein receptor CD36. rCOMP simultaneously increased the expression of α-SMA, Fibronectin and Collagen I in HPSCs. CONCLUSION In conclusion, this study showed that COMP was up-regulated in CP fibrotic tissues and COMP induced the activation, proliferation and migration of PSCs through the CD36-ERK/AKT signaling pathway. COMP may be a potential therapeutic candidate for the treatment of CP. Interfering with the expression of COMP or the communication between COMP and CD36 on PSCs may be the next direction for therapeutic research.
Collapse
Affiliation(s)
- Yi Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hai-Tao Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Gang Liu
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Chuan-Shen Jiang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Yan-Hong Ni
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing-Hui Zeng
- Department of Presbyatrics, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xia Lin
- Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Qing-Yun Wang
- Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Da-Zhou Li
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| | - Wen Wang
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| | - Xiang-Peng Zeng
- Department of Digestive Diseases, 900TH Hospital of Joint Logistics Support Force, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Department of Digestive Diseases, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, China; Department of Digestive Diseases, Dongfang Hospital, Xiamen University, Fuzhou, China.
| |
Collapse
|
6
|
Rosenstein RK, Rose JJ, Brooks SR, Tsai WL, Gadina M, Pavletic SZ, Nagao K, Cowen EW. Identification of Fibroinflammatory and Fibrotic Transcriptomic Subsets of Human Cutaneous Sclerotic Chronic Graft-Versus-Host Disease. JID INNOVATIONS 2024; 4:100246. [PMID: 38357212 PMCID: PMC10864809 DOI: 10.1016/j.xjidi.2023.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 02/16/2024] Open
Abstract
Cutaneous sclerotic chronic graft-versus-host disease (cGVHD) is a common and highly morbid complication of allogeneic hematopoietic stem cell transplantation. Our goals were to identify signals active in the skin of patients with sclerotic cGVHD in an effort to better understand how to treat this manifestation and to explore the heterogeneity of the disease. We identified genes that are significantly upregulated in the skin of patients with sclerotic cGVHD (n = 17) compared with those in the skin of patients who underwent allogeneic hematopoietic stem cell transplantation without cutaneous cGVHD (n = 9) by bulk RNA sequencing. Sclerotic cGVHD was most associated with T helper 1, phagocytic, and fibrotic pathways. In addition, different transcriptomic groups of affected patients were discovered: those with fibrotic and inflammatory/T helper 1 gene expression (the fibroinflammatory group) and those with predominantly fibrotic/TGFβ-associated expression (the fibrotic group). Further study will help elucidate whether these gene expression findings can be used to tailor treatment decisions. Multiple proteins encoded by highly induced genes in the skin (SFRP4, SERPINE2, COMP) were also highly induced in the plasma of patients with sclerotic cGVHD (n = 16) compared with those in plasma of control patients who underwent allogeneic hematopoietic stem cell transplantation without sclerotic cGVHD (n = 17), suggesting these TGFβ and Wnt pathway mediators as candidate blood biomarkers of the disease.
Collapse
Affiliation(s)
- Rachel K. Rosenstein
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Medicine, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | | | - Stephen R. Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wanxia L. Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Z. Pavletic
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward W. Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Yu Y, Liang C, Tang Q, Shi Y, Shen L. Characteristics of n6-methyladenosine (m6A) regulators and role of FTO/TNC in scleroderma. Gene 2024; 894:147989. [PMID: 37972699 DOI: 10.1016/j.gene.2023.147989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND m6A regulators have important roles in a variety of autoimmune diseases, but their potential function in scleroderma, a refractory connective tissue disease, remains unclear. Tenascin C (TNC) is known to be a factor promoting collagen deposition in the development of scleroderma, but the regulatory relationship between TNC and m6A regulators is unknown. METHODS We extracted GSE33463 data consisting of forty-one healthy controls and sixty-one patients with scleroderma, and we analyzed the expression levels of twenty-one m6A regulators as well as the associations between them. In addition, we obtained random forest (RF) and nomogram models to predict the likehood of scleroderma. Next, we categorized the m6Aclusters and geneclusters by consensus clustering, and we performed an immune cell infiltration analysis for each cluster. Finally, we injected adenoviruses into a bleomycin (BLM)-induced mouse model of scleroderma, which was used to overexpress FTO and TNC. We assess the extent of skin fibrosis in the mice samples using pathology stains and measuring their hydroxyproline content and collagen mRNA. RESULTS We initially identified fourteen differentially expressed m6A regulators (WTAP, RBM15, CBLL1, FTO, ALKBH5, YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, RBMX, HNRNPC, IGFBP1 and IGFBP2). We found ALKBH5 to be positively associated with CBLL1 and RBM15, and FTO to be negatively associated with WTAP. In addition, we identified four m6A regulators (CBLL1, IGFBP1, YTHDF2 and IGFBP2) using a RF model, and we designed a nomogram model with those variables that proved reliable according to the calibration curve and clinical impact curve. We found that the m6Acluster A was correlated with Type 1 T helper cell infiltration and the genecluster A was correlated with regulatory T cell infiltration. Finally, we showed that FTO overexpression downregulated the m6A and mRNA levels of TNC, and alleviated skin fibrosis in the mouse model of scleroderma. Thus, our overexpression experiments provide preliminary evidence suggesting that TNC is an adverse factor in scleroderma. CONCLUSION Our approach might be useful as a new and accurate scleroderma diagnosis method. Moreover, our results suggested that FTO/TNC might be a novel scleroderma therapeutic target.
Collapse
Affiliation(s)
- Yue Yu
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Liang
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qinyu Tang
- Department of Dermatology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China.
| | - Liangliang Shen
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Fu M, Hua X, Shu S, Xu X, Zhang H, Peng Z, Mo H, Liu Y, Chen X, Yang Y, Zhang N, Wang X, Liu Z, Yue G, Hu S, Song J. Single-cell RNA sequencing in donor and end-stage heart failure patients identifies NLRP3 as a therapeutic target for arrhythmogenic right ventricular cardiomyopathy. BMC Med 2024; 22:11. [PMID: 38185631 PMCID: PMC10773142 DOI: 10.1186/s12916-023-03232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Dilation may be the first right ventricular change and accelerates the progression of threatening ventricular tachyarrhythmias and heart failure for patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), but the treatment for right ventricular dilation remains limited. METHODS Single-cell RNA sequencing (scRNA-seq) of blood and biventricular myocardium from 8 study participants was performed, including 6 end-stage heart failure patients with ARVC and 2 normal controls. ScRNA-seq data was then deeply analyzed, including cluster annotation, cellular proportion calculation, and characterization of cellular developmental trajectories and interactions. An integrative analysis of our single-cell data and published genome-wide association study-based data provided insights into the cell-specific contributions to the cardiac arrhythmia phenotype of ARVC. Desmoglein 2 (Dsg2)mut/mut mice were used as the ARVC model to verify the therapeutic effects of pharmacological intervention on identified cellular cluster. RESULTS Right ventricle of ARVC was enriched of CCL3+ proinflammatory macrophages and TNMD+ fibroblasts. Fibroblasts were preferentially affected in ARVC and perturbations associated with ARVC overlap with those reside in genetic variants associated with cardiac arrhythmia. Proinflammatory macrophages strongly interact with fibroblast. Pharmacological inhibition of Nod-like receptor protein 3 (NLRP3), a transcriptional factor predominantly expressed by the CCL3+ proinflammatory macrophages and several other myeloid subclusters, could significantly alleviate right ventricular dilation and dysfunction in Dsg2mut/mut mice (an ARVC mouse model). CONCLUSIONS This study provided a comprehensive analysis of the lineage-specific changes in the blood and myocardium from ARVC patients at a single-cell resolution. Pharmacological inhibition of NLRP3 could prevent right ventricular dilation and dysfunction of mice with ARVC.
Collapse
Affiliation(s)
- Mengxia Fu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Songren Shu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Xinjie Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Zhiming Peng
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China
| | - Yanyun Liu
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Shaanxi, 710126, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Zirui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China
| | - Guangxin Yue
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Shengshou Hu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167A Beilishi Road, Xi Cheng District, Beijing, 10037, China.
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518057, China.
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
- The Cardiomyopathy Research Group, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
9
|
Benfaremo D, Agarbati S, Mozzicafreddo M, Paolini C, Svegliati S, Moroncini G. Skin Gene Expression Profiles in Systemic Sclerosis: From Clinical Stratification to Precision Medicine. Int J Mol Sci 2023; 24:12548. [PMID: 37628728 PMCID: PMC10454358 DOI: 10.3390/ijms241612548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis, also known as scleroderma or SSc, is a condition characterized by significant heterogeneity in clinical presentation, disease progression, and response to treatment. Consequently, the design of clinical trials to successfully identify effective therapeutic interventions poses a major challenge. Recent advancements in skin molecular profiling technologies and stratification techniques have enabled the identification of patient subgroups that may be relevant for personalized treatment approaches. This narrative review aims at providing an overview of the current status of skin gene expression analysis using computational biology approaches and highlights the benefits of stratifying patients upon their skin gene signatures. Such stratification has the potential to lead toward a precision medicine approach in the management of SSc.
Collapse
Affiliation(s)
- Devis Benfaremo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Silvia Agarbati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Chiara Paolini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
| | - Silvia Svegliati
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| | - Gianluca Moroncini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy; (D.B.); (S.A.); (M.M.); (C.P.); (S.S.)
- Clinica Medica, Department of Internal Medicine, Marche University Hospital, 60126 Ancona, Italy
| |
Collapse
|
10
|
Madrid-García A, Merino-Barbancho B, Rodríguez-González A, Fernández-Gutiérrez B, Rodríguez-Rodríguez L, Menasalvas-Ruiz E. Understanding the role and adoption of artificial intelligence techniques in rheumatology research: An in-depth review of the literature. Semin Arthritis Rheum 2023; 61:152213. [PMID: 37315379 DOI: 10.1016/j.semarthrit.2023.152213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
The major and upward trend in the number of published research related to rheumatic and musculoskeletal diseases, in which artificial intelligence plays a key role, has exhibited the interest of rheumatology researchers in using these techniques to answer their research questions. In this review, we analyse the original research articles that combine both worlds in a five- year period (2017-2021). In contrast to other published papers on the same topic, we first studied the review and recommendation articles that were published during that period, including up to October 2022, as well as the publication trends. Secondly, we review the published research articles and classify them into one of the following categories: disease identification and prediction, disease classification, patient stratification and disease subtype identification, disease progression and activity, treatment response, and predictors of outcomes. Thirdly, we provide a table with illustrative studies in which artificial intelligence techniques have played a central role in more than twenty rheumatic and musculoskeletal diseases. Finally, the findings of the research articles, in terms of disease and/or data science techniques employed, are highlighted in a discussion. Therefore, the present review aims to characterise how researchers are applying data science techniques in the rheumatology medical field. The most immediate conclusions that can be drawn from this work are: multiple and novel data science techniques have been used in a wide range of rheumatic and musculoskeletal diseases including rare diseases; the sample size and the data type used are heterogeneous, and new technical approaches are expected to arrive in the short-middle term.
Collapse
Affiliation(s)
- Alfredo Madrid-García
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain; Escuela Técnica Superior de Ingenieros de Telecomunicación. Universidad Politécnica de Madrid, Avenida Complutense, 30, Madrid, 28040, Spain.
| | - Beatriz Merino-Barbancho
- Escuela Técnica Superior de Ingenieros de Telecomunicación. Universidad Politécnica de Madrid, Avenida Complutense, 30, Madrid, 28040, Spain
| | | | - Benjamín Fernández-Gutiérrez
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain
| | - Luis Rodríguez-Rodríguez
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain
| | - Ernestina Menasalvas-Ruiz
- Centro de Tecnología Biomédica. Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
11
|
Vonk MC, Assassi S, Hoffmann-Vold AM. Scleroderma Skin: How Is Treatment Best Guided by Data and Implemented in Clinical Practice? Rheum Dis Clin North Am 2023; 49:249-262. [PMID: 37028833 DOI: 10.1016/j.rdc.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
As skin involvement is the hall mark of systemic sclerosis (SSc) and changes of skin involvement have shown to correlate with internal organ involvement, assessing the extend of skin involvement is key. Although the modified Rodnan skin score is a validated tool used to evaluate the skin in SSc, it has its drawbacks. Novel imagine methods are promising but should be further evaluated. As for molecule markers for skin progression there are conflicting data on the predictive significance of baseline SSc skin gene expression profiles, but immune cell type signature in SSc skin correlates with progression.
Collapse
Affiliation(s)
- Madelon C Vonk
- Department of Rheumatology, Radboud University Nijmegen Medical Centre, Huispost 667, PO Box 9101, Nijmegen 6500HB, the Netherlands.
| | - Shervin Assassi
- Division of Rheumatology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, USA
| | - Anna-Maria Hoffmann-Vold
- Department of Rheumatology, Oslo University Hospital - Rikshospitalet, Pb 4950, Nydalen, Oslo 0424, Norway
| |
Collapse
|
12
|
Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities. Int J Mol Sci 2022; 23:ijms23169253. [PMID: 36012514 PMCID: PMC9408827 DOI: 10.3390/ijms23169253] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix (ECM) glycoprotein that is critical for collagen assembly and ECM stability. Mutations of COMP cause endoplasmic reticulum stress and chondrocyte apoptosis, resulting in rare skeleton diseases. The bouquet-like structure of COMP allows it to act as a bridging molecule that regulates cellular phenotype and function. COMP is able to interact with many other ECM components and binds directly to a variety of cellular receptors and growth factors. The roles of COMP in other skeleton diseases, such as osteoarthritis, have been implied. As a well-established biochemical marker, COMP indicates cartilage turnover associated with destruction. Recent exciting achievements indicate its involvement in other diseases, such as malignancy, cardiovascular diseases, and tissue fibrosis. Here, we review the basic concepts of COMP and summarize its novel functions in the regulation of signaling events. These findings renew our understanding that COMP has a notable function in cell behavior and disease progression as a signaling regulator. Interestingly, COMP shows distinct functions in different diseases. Targeting COMP in malignancy may withdraw its beneficial effects on the vascular system and induce or aggravate cardiovascular diseases. COMP supplementation is a promising treatment for OA and aortic aneurysms while it may induce tissue fibrosis or cancer metastasis.
Collapse
|
13
|
Clark KEN, Csomor E, Campochiaro C, Galwey N, Nevin K, Morse MA, Teo YV, Freudenberg J, Ong VH, Derrett-Smith E, Wisniacki N, Flint SM, Denton CP. Integrated analysis of dermal blister fluid proteomics and genome-wide skin gene expression in systemic sclerosis: an observational study. THE LANCET. RHEUMATOLOGY 2022; 4:e507-e516. [PMID: 36404995 PMCID: PMC9669928 DOI: 10.1016/s2665-9913(22)00094-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Skin fibrosis is a hallmark feature of systemic sclerosis. Skin biopsy transcriptomics and blister fluid proteomics give insight into the local environment of the skin. We have integrated these modalities with the aim of developing a surrogate for the modified Rodnan skin score (mRSS), using candidate genes and proteins from the skin and blister fluid as anchors to identify key analytes in the plasma. Methods In this single-centre, prospective observational study at the Royal Free Campus, University College London, London, UK, transcriptional and proteomic analyses of blood and skin were performed in a cohort of patients with systemic sclerosis (n=52) and healthy controls (n=16). Weighted gene co-expression network analysis was used to explore the association of skin transcriptomics data, clinical traits, and blister fluid proteomic results. Candidate hub analytes were identified as those present in both blister and skin gene sets (modules), and which correlated with plasma (module membership >0·7 and gene significance >0·6). Hub analytes were confirmed using RNA transcript data obtained from skin biopsy samples from patients with early diffuse cutaneous systemic sclerosis at 12 months. Findings We identified three modules in the skin, and two in blister fluid, which correlated with a diagnosis of early diffuse cutaneous systemic sclerosis. From these modules, 11 key hub analytes were identified, present in both skin and blister fluid modules, whose transcript and protein levels correlated with plasma protein concentrations, mRSS, and showed statistically significant correlation on repeat transcriptomic samples taken at 12 months. Multivariate analysis identified four plasma analytes as correlates of mRSS (COL4A1, COMP, SPON1, and TNC), which can be used to differentiate disease subtype. Interpretation This unbiased approach has identified potential biological candidates that might be drivers of local skin pathogenesis in systemic sclerosis. By focusing on measurable analytes in the plasma, we generated a promising composite plasma protein biomarker that could be used for assessment of skin severity, case stratification, and as a potential outcome measure for clinical trials and practice. Once fully validated, the biomarker score could replace a clinical score such as the mRSS, which carries substantial variability. Funding GlaxoSmithKline and UK Medical Research Council.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary A Morse
- Immunoinflammation, GlaxoSmithKline, Stevenage, UK
| | - Yee Voan Teo
- Computational Biology, GlaxoSmithKline, California, USA
| | | | - Voon H Ong
- Centre for Rheumatology, University College London, London, UK
| | | | | | | | | |
Collapse
|
14
|
In silico Methods for Identification of Potential Therapeutic Targets. Interdiscip Sci 2022; 14:285-310. [PMID: 34826045 PMCID: PMC8616973 DOI: 10.1007/s12539-021-00491-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/01/2022]
Abstract
AbstractAt the initial stage of drug discovery, identifying novel targets with maximal efficacy and minimal side effects can improve the success rate and portfolio value of drug discovery projects while simultaneously reducing cycle time and cost. However, harnessing the full potential of big data to narrow the range of plausible targets through existing computational methods remains a key issue in this field. This paper reviews two categories of in silico methods—comparative genomics and network-based methods—for finding potential therapeutic targets among cellular functions based on understanding their related biological processes. In addition to describing the principles, databases, software, and applications, we discuss some recent studies and prospects of the methods. While comparative genomics is mostly applied to infectious diseases, network-based methods can be applied to infectious and non-infectious diseases. Nonetheless, the methods often complement each other in their advantages and disadvantages. The information reported here guides toward improving the application of big data-driven computational methods for therapeutic target discovery.
Graphical abstract
Collapse
|
15
|
Rokni M, Sadeghi Shaker M, Kavosi H, Shokoofi S, Mahmoudi M, Farhadi E. The role of endothelin and RAS/ERK signaling in immunopathogenesis-related fibrosis in patients with systemic sclerosis: an updated review with therapeutic implications. Arthritis Res Ther 2022; 24:108. [PMID: 35562771 PMCID: PMC9102675 DOI: 10.1186/s13075-022-02787-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is a disease of connective tissue with high rate of morbidity and mortality highlighted by extreme fibrosis affecting various organs such as the dermis, lungs, and heart. Until now, there is no specific cure for the fibrosis occurred in SSc disease. The SSc pathogenesis is yet unknown, but transforming growth factor beta (TGF-β), endothelin-1 (ET-1), and Ras-ERK1/2 cascade are the main factors contributing to the tissue fibrosis through extracellular matrix (ECM) accumulation. Several studies have hallmarked the association of ET-1 with or without TGF-β and Ras-ERK1/2 signaling in the development of SSc disease, vasculopathy, and fibrosis of the dermis, lungs, and several organs. Accordingly, different clinical and experimental studies have indicated the potential therapeutic role of ET-1 and Ras antagonists in these situations in SSc. In addition, ET-1 and connective tissue growth factor (CTGF) as a cofactor of the TGF-β cascade play a substantial initiative role in inducing fibrosis. Once initiated, TGF-β alone or in combination with ET-1 and CTGF can activate several kinase proteins such as the Ras-ERK1/2 pathway that serve as the fundamental factor for developing fibrosis. Furthermore, Salirasib is a synthetic small molecule that is able to inhibit all Ras forms. Therefore, it can be used as a potent therapeutic factor for fibrotic disorders. So, this review discusses the role of TGF-β/ET-1/Ras signaling and their involvement in SSc pathogenesis, particularly in its fibrotic situation.
Collapse
Affiliation(s)
- Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shokoofi
- Rheumatology Department, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Liu Y, Ding Y, Liu Z, Chen Q, Li X, Xue X, Pu Y, Ma Y, Zhao Q. Integration Analysis of Transcriptome and Proteome Reveal the Mechanisms of Goat Wool Bending. Front Cell Dev Biol 2022; 10:836913. [PMID: 35433706 PMCID: PMC9011194 DOI: 10.3389/fcell.2022.836913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Zhongwei goat is a unique Chinese native goat breed for excellent lamb fur. The pattern of flower spikes of the lamb fur was significantly reduced due to the reduction of the bending of the hair strands with growth. In order to explore the molecular mechanism underlying hair bending with growth, we performed the comprehensive analysis of transcriptome and proteome of skins from 45-days, 108-days and 365-days goat based on TMT-based quantitative proteomics and RNA-seq methods. In the three comparison groups, 356, 592 and 282 differentially expressed proteins (DEPs) were screened, respectively. KEGG pathway analysis indicated that DEPs were significantly enriched in a set of signaling pathways related to wool growth and bending, such as ECM-receptor interaction, PI3K-Akt signaling pathway, PPAR signaling pathway, protein digestion and absorption, and metabolic pathways. In addition, 20 DEPs abundance of goat skin at three development stages were examined by PRM method, which validated the reliability of proteomic data. Among them, KRT and collagen alpha family may play an important role in the development of goat hair follicle and wool bending. COL6A1, COL6A2, CRNN, TNC and LOC102178129 were identified as candidate genes based on combined analysis of transcriptome and proteome data and PRM quantification. Our results identify the differential expressed proteins as well as pathways related to the wool bending of Zhongwei goats and provide a theoretical basis for further revealing the molecular mechanism underlying wool bending of goats.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yangyang Ding
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhanfa Liu
- The Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat, Zhongwei, China
| | - Qian Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaobo Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xianglan Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| | - Qianjun Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| |
Collapse
|
17
|
Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis 2022; 81:108-116. [PMID: 34380701 DOI: 10.1136/annrheumdis-2021-220493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/25/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Interstitial lung disease is a significant comorbidity and the leading cause of mortality in patients with systemic sclerosis. Transcriptomic data of systemic sclerosis-associated interstitial lung disease (SSc-ILD) were analysed to evaluate the salient molecular and cellular signatures in comparison with those in related pulmonary diseases and to identify the key driver genes and target molecules in the disease module. METHODS A transcriptomic dataset of lung tissues from patients with SSc-ILD (n=52), idiopathic pulmonary fibrosis (IPF) (n=549), non-specific interstitial pneumonia (n=49) and pulmonary arterial hypertension (n=81) and from normal healthy controls (n=331) was subjected to filtration of differentially expressed genes, functional enrichment analysis, network-based key driver analysis and kernel-based diffusion scoring. The association of enriched pathways with clinical parameters was evaluated in patients with SSc-ILD. RESULTS SSc-ILD shared key pathogenic pathways with other fibrosing pulmonary diseases but was distinguishable in some pathological processes. SSc-ILD showed general similarity with IPF in molecular and cellular signatures but stronger signals for myofibroblasts, which in SSc-ILD were in a senescent and apoptosis-resistant state. The p53 signalling pathway was the most enriched signature in lung tissues and lung fibroblasts of SSc-ILD, and was significantly correlated with carbon monoxide diffusing capacity of lung, cellular senescence and apoptosis. EEF2, EFF2K, PHKG2, VCAM1, PRKACB, ITGA4, CDK1, CDK2, FN1 and HDAC1 were key regulators with high diffusion scores in the disease module. CONCLUSIONS Integrative transcriptomic analysis of lung tissues revealed key signatures of fibrosis in SSc-ILD. A network-based Bayesian approach provides deep insights into key regulatory genes and molecular targets applicable to treating SSc-ILD.
Collapse
Affiliation(s)
- Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Skaug B, Lyons MA, Swindell WR, Salazar GA, Wu M, Tran TM, Charles J, Vershel CP, Mayes MD, Assassi S. Large-scale analysis of longitudinal skin gene expression in systemic sclerosis reveals relationships of immune cell and fibroblast activity with skin thickness and a trend towards normalisation over time. Ann Rheum Dis 2021; 81:516-523. [PMID: 34937693 DOI: 10.1136/annrheumdis-2021-221352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Determine relationships between skin gene expression and systemic sclerosis (SSc) clinical disease features, and changes in skin gene expression over time. METHODS A total of 339 forearm skin biopsies were obtained from 113 SSc patients and 44 matched healthy controls. 105 SSc patients had a second biopsy, and 76 had a third biopsy. Global gene expression profiling was performed, and differentially expressed genes and cell type-specific signatures in SSc were evaluated for relationships to modified Rodnan Skin Score (mRSS) and other clinical variables. Changes in skin gene expression over time were analysed by mixed effects models and principal component analysis. Immunohistochemical staining was performed to validate conclusions. RESULTS Gene expression dysregulation was greater in SSc patients with affected skin than in those with unaffected skin. Immune cell and fibroblast signatures positively correlated with mRSS. High baseline immune cell and fibroblast signatures predicted higher mRSS over time, but were not independently predictive of longitudinal mRSS after adjustment for baseline mRSS. In early diffuse cutaneous SSc, immune cell and fibroblast signatures declined over time, and overall skin gene expression trended towards normalisation. On immunohistochemical staining, most early diffuse cutaneous SSc patients with high baseline T cell and macrophage numbers had declines in these numbers at follow-up. CONCLUSIONS Skin thickness in SSc is related to dysregulated immune cell and fibroblast gene expression. Skin gene expression changes over time in early diffuse SSc, with a tendency towards normalisation. These observations are relevant for understanding SSc pathogenesis and could inform treatment strategies and clinical trial design.
Collapse
Affiliation(s)
- Brian Skaug
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Marka A Lyons
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - William R Swindell
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, Ohio, USA
| | - Gloria A Salazar
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Minghua Wu
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Tuan M Tran
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julio Charles
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Connor P Vershel
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Maureen D Mayes
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
19
|
Kim SK, Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of idiopathic pulmonary fibrosis. BMC Pulm Med 2021; 21:404. [PMID: 34876074 PMCID: PMC8650281 DOI: 10.1186/s12890-021-01749-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a devastating disease with a high clinical burden. The molecular signatures of IPF were analyzed to distinguish molecular subgroups and identify key driver genes and therapeutic targets. Methods Thirteen datasets of lung tissue transcriptomics including 585 IPF patients and 362 normal controls were obtained from the databases and subjected to filtration of differentially expressed genes (DEGs). A functional enrichment analysis, agglomerative hierarchical clustering, network-based key driver analysis, and diffusion scoring were performed, and the association of enriched pathways and clinical parameters was evaluated. Results A total of 2,967 upregulated DEGs was filtered during the comparison of gene expression profiles of lung tissues between IPF patients and healthy controls. The core molecular network of IPF featured p53 signaling pathway and cellular senescence. IPF patients were classified into two molecular subgroups (C1, C2) via unsupervised clustering. C1 was more enriched in the p53 signaling pathway and ciliated cells and presented a worse prognostic score, while C2 was more enriched for cellular senescence, profibrosing pathways, and alveolar epithelial cells. The p53 signaling pathway was closely correlated with a decline in forced vital capacity and carbon monoxide diffusion capacity and with the activation of cellular senescence. CDK1/2, CKDNA1A, CSNK1A1, HDAC1/2, FN1, VCAM1, and ITGA4 were the key regulators as evidence by high diffusion scores in the disease module. Currently available and investigational drugs showed differential diffusion scores in terms of their target molecules. Conclusions An integrative molecular analysis of IPF lungs identified two molecular subgroups with distinct pathobiological characteristics and clinical prognostic scores. Inhibition against CDKs or HDACs showed great promise for controlling lung fibrosis. This approach provided molecular insights to support the prediction of clinical outcomes and the selection of therapeutic targets in IPF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01749-3.
Collapse
Affiliation(s)
- Sung Kyoung Kim
- Division of Pulmonology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
20
|
Shen L, Yu Y, Jiang M, Zhao J. Alteration of the m 6A methylation landscape in a mouse model of scleroderma. Epigenomics 2021; 13:1867-1883. [PMID: 34791892 DOI: 10.2217/epi-2021-0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To explore the N6-methyladenosine (m6A) methylation of mRNAs and its roles in a mouse model of scleroderma. Materials & methods: To evaluate whether the mouse model of scleroderma could meet the experimental requirements, we examined skin tissue specimens by pathological staining and identified the related indicators by quantitative PCR (qPCR). m6A-tagged mRNAs were identified via m6A epitranscriptomic microarray, and m6A-RNA-immunoprecipitation qPCR and qPCR were performed to confirm microarray data. Results: There were differences in m6A methylation among 843 mRNAs. Further, there were significant differences among Hras, Saa1, Ccl3, Ccl9 and Il1b in terms of methylation and expression. Conclusion: The m6A methylation spectrum in a mouse model of scleroderma may explain the occurrence of scleroderma.
Collapse
Affiliation(s)
- Liangliang Shen
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yue Yu
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Miao Jiang
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
21
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
22
|
Abstract
From the clinical standpoint, systemic sclerosis (SSc) is characterized by skin and internal organ fibrosis, diffuse fibroproliferative vascular modifications, and autoimmunity. Clinical presentation and course are highly heterogenous and life expectancy variably affected mostly dependent on lung and heart involvement. SSc touches more women than men with differences in disease severity and environmental exposure. Pathogenetic events originate from altered homeostasis favored by genetic predisposition, environmental cues and a variety of endogenous and exogenous triggers. Epigenetic modifications modulate SSc pathogenesis which strikingly associate profound immune-inflammatory dysregulation, abnormal endothelial cell behavior, and cell trans-differentiation into myofibroblasts. SSc myofibroblasts show enhanced survival and enhanced extracellular matrix deposition presenting altered structure and altered physicochemical properties. Additional cell types of likely pathogenic importance are pericytes, platelets, and keratinocytes in conjunction with their relationship with vessel wall cells and fibroblasts. In SSc, the profibrotic milieu is favored by cell signaling initiated in the one hand by transforming growth factor-beta and related cytokines and in the other hand by innate and adaptive type 2 immune responses. Radical oxygen species and invariant receptors sensing danger participate to altered cell behavior. Conventional and SSc-specific T cell subsets modulate both fibroblasts as well as endothelial cell dysfunction. Beside autoantibodies directed against ubiquitous antigens important for enhanced clinical classification, antigen-specific agonistic autoantibodies may have a pathogenic role. Recent studies based on single-cell RNAseq and multi-omics approaches are revealing unforeseen heterogeneity in SSc cell differentiation and functional states. Advances in system biology applied to the wealth of data generated by unbiased screening are allowing to subgroup patients based on distinct pathogenic mechanisms. Deciphering heterogeneity in pathogenic mechanisms will pave the way to highly needed personalized therapeutic approaches.
Collapse
|
23
|
Insights Into Systemic Sclerosis from Gene Expression Profiling. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Shen W, Zhang Z, Ma J, Lu D, Lyu L. The Ubiquitin Proteasome System and Skin Fibrosis. Mol Diagn Ther 2021; 25:29-40. [PMID: 33433895 DOI: 10.1007/s40291-020-00509-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved way to regulate protein turnover in cells. The UPS hydrolyzes and destroys variant or misfolded proteins and finely regulates proteins involved in differentiation, apoptosis, and other biological processes. This system is a key regulatory factor in the proliferation, differentiation, and collagen secretion of skin fibroblasts. E3 ubiquitin protein ligases Parkin and NEDD4 regulate multiple signaling pathways in keloid. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) binding with deubiquitinase USP10 can induce p53 destabilization and promote keloid-derived fibroblast proliferation. The UPS participates in the occurrence and development of hypertrophic scars by regulating the transforming growth factor (TGF)-β/Smad signaling pathway. An initial study suggests that TNFα-induced protein 3 (TNFAIP3) polymorphisms may be significantly associated with scleroderma susceptibility in individuals of Caucasian descent. Sumoylation and multiple ubiquitin ligases, including Smurfs, UFD2, and KLHL42, play vital roles in scleroderma by targeting the TGF-β/Smad signaling pathway. In the future, drugs targeting E3 ligases and deubiquitinating enzymes have great potential for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Wanlu Shen
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhigang Zhang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiaqing Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
25
|
Liu B, Ding Y, Li P, Wang T, He S, Jia Z, Yang J. MicroRNA-219c-5p regulates bladder fibrosis by targeting FN1. BMC Urol 2020; 20:193. [PMID: 33287818 PMCID: PMC7720614 DOI: 10.1186/s12894-020-00765-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We found that the bladders of multiple sclerosis mice were significantly fibrotic. This study aimed to investigate the relationship between fibronectin 1 (FN1) and bladder fibrosis, as well as the microRNAs involved in FN1 regulation. METHODS The degree of bladder smooth muscle fibrosis was observed by immunohistochemistry. In addition, we used quantitative real-time polymerase chain reaction (RT-qPCR) and Western blotting to determine FN1 expression in bladders with different grades of fibrosis. Bioinformatics analysis revealed that miR-199a-3p, miR-219c-5p and miR-3572-3p could inhibit FN1 synthesis. Therefore, miR-199a-3p, miR-219c-5p and miR-3572-3p were overexpressed or knocked down in bladder smooth muscle cells (BSMCs), and the respective transfection and FN1 knockdown efficiencies were detected by RT-qPCR. Only miR-219c-5p overexpression and knockdown produced the expected results. A dual luciferase reporter assay was used to determine the targeting relationship between miR-219c-5p and FN1. Flow cytometry and Cell Counting Kit 8 (CCK8) experiments confirmed that miR-219c-5p reduced FN1 expression and affected the biological activity of smooth muscle cells. Agomir and anagomir of miR-219c-5p were transfected in vivo to observe the change of bladder fibrosis in mice. RESULTS With increasing bladder fibrosis, FN1 expression increased, while miR-199a-3p, miR-219c-5p, and miR-3572-3p expression levels decreased. The RT-qPCR results after transfection showed that only miR-219c-5p could regulate FN1. Indeed, the dual luciferase reporter assay results indicated that miR-219c-5p targeted FN1 directly. CCK8 and cell cycle assays showed that miR-219c-5p overexpression inhibited BSMC proliferation, while miR-219c-5p knockdown promoted BSMC proliferation. An apoptosis assay showed that miR-219c-5p overexpression promoted apoptosis, while miR-219c-5p knockdown inhibited BSMC apoptosis. The agomir and anagomir transfected with miR-219c-5p in vivo found that the bladder fibrosis of the mice in the agomir group was reduced, and the anagomir group was worse. CONCLUSIONS Our findings indicate that FN1 up-regulation and miR-219c-5p down-regulation play an important role in the development of bladder fibrosis, and miR-219c-5p participates in bladder fibrosis by regulating FN1 expression. Thus, a novel antifibrotic function of miR-219c-5p is proposed, which may represent a potential target for the diagnosis and treatment of bladder fibrosis.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China.,Zhengzhou Institute of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China
| | - Yafei Ding
- Department of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China
| | - Peng Li
- Department of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China
| | - Tao Wang
- Department of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China
| | - Siyuan He
- Department of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China
| | - Zhankui Jia
- Department of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China.,Zhengzhou Institute of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China
| | - Jinjian Yang
- Department of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China. .,Zhengzhou Institute of Urology, Zhengzhou University First Affiliated Hospital, Zhengzhou, 450052, China.
| |
Collapse
|
26
|
Xu X, Ramanujam M, Visvanathan S, Assassi S, Liu Z, Li L. Transcriptional insights into pathogenesis of cutaneous systemic sclerosis using pathway driven meta-analysis assisted by machine learning methods. PLoS One 2020; 15:e0242863. [PMID: 33253326 PMCID: PMC7703909 DOI: 10.1371/journal.pone.0242863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
Pathophysiology of systemic sclerosis (SSc, Scleroderma), an autoimmune rheumatic disease, comprises of mechanisms that drive vasculopathy, inflammation and fibrosis. Understanding of the disease and associated clinical heterogeneity has advanced considerably in the past decade, highlighting the necessity of more specific targeted therapy. While many of the recent trials in SSc failed to meet the primary end points that predominantly relied on changes in modified Rodnan skin scores (MRSS), sub-group analysis, especially those focused on the basal skin transcriptomic data have provided insights into patient subsets that respond to therapies. These findings suggest that deeper understanding of the molecular changes in pathways is very important to define disease drivers in various patient subgroups. In view of these challenges, we performed meta-analysis on 9 public available SSc microarray studies using a novel pathway pivoted approach combining consensus clustering and machine learning assisted feature selection. Selected pathway modules were further explored through cluster specific topological network analysis in search of novel therapeutic concepts. In addition, we went beyond previously described SSc class divisions of 3 clusters (e.g. inflammation, fibro-proliferative, normal-like) and expanded into a much finer stratification in order to profile SSc patients more accurately. Our analysis unveiled an important 80 pathway signatures that differentiated SSc patients into 8 unique subtypes. The 5 pathway modules derived from such signature successfully defined the 8 SSc subsets and were validated by in-silico cellular deconvolution analysis. Myeloid cells and fibroblasts involvement in different clusters were confirmed and linked to corresponding pathway activities. Collectively, our findings revealed more complex disease subtypes in SSc; Key gene mediators such as IL6, FGFR1, TLR7, PLCG2, IRK2 identified by network analysis underscored the scientific rationale for exploring additional targets in treatment of SSc.
Collapse
Affiliation(s)
- Xiao Xu
- Computational Biology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
| | - Meera Ramanujam
- Immunology and Respiratory Diseases Research, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
| | - Sudha Visvanathan
- Translational Medicine and Clinical Pharmacology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Zheng Liu
- Computational Biology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
| | - Li Li
- Computational Biology, Boehringer-Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States of America
- * E-mail:
| |
Collapse
|
27
|
Feng D, Gerarduzzi C. Emerging Roles of Matricellular Proteins in Systemic Sclerosis. Int J Mol Sci 2020; 21:E4776. [PMID: 32640520 PMCID: PMC7369781 DOI: 10.3390/ijms21134776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis is a rare chronic heterogenous disease that involves inflammation and vasculopathy, and converges in end-stage development of multisystem tissue fibrosis. The loss of tight spatial distribution and temporal expression of proteins in the extracellular matrix (ECM) leads to progressive organ stiffening, which is a hallmark of fibrotic disease. A group of nonstructural matrix proteins, known as matricellular proteins (MCPs) are implicated in dysregulated processes that drive fibrosis such as ECM remodeling and various cellular behaviors. Accordingly, MCPs have been described in the context of fibrosis in sclerosis (SSc) as predictive disease biomarkers and regulators of ECM synthesis, with promising therapeutic potential. In this present review, an informative summary of major MCPs is presented highlighting their clear correlations to SSc- fibrosis.
Collapse
Affiliation(s)
- Daniel Feng
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Casimiro Gerarduzzi
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l’Université de Montréal, Montréal, QC H1T 2M4, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW To discuss recent advances in identification of biomarkers in systemic sclerosis for disease severity, prognosis, and treatment response. RECENT FINDINGS Recent reports describe novel circulating markers of disease severity, autoantibody associations with specific manifestations including cancer, and skin gene expression-based predictors of modified Rodnan skin score progression and treatment response. Moreover, there is converging evidence that C-reactive protein and pneumoproteins such as Krebs von den Lungen-6 and chemokine ligand 18 could serve as prognostic biomarkers in systemic sclerosis-associated interstitial lung disease. SUMMARY Several novel biomarkers show promise in improving the assessment of systemic sclerosis (SSc) disease severity, prognosis, and treatment response. Their potential utility in prospective selection of patients for clinical trials and in individual patient management require additional research.
Collapse
|
29
|
Skaug B, Khanna D, Swindell WR, Hinchcliff ME, Frech TM, Steen VD, Hant FN, Gordon JK, Shah AA, Zhu L, Zheng WJ, Browning JL, Barron AMS, Wu M, Visvanathan S, Baum P, Franks JM, Whitfield ML, Shanmugam VK, Domsic RT, Castelino FV, Bernstein EJ, Wareing N, Lyons MA, Ying J, Charles J, Mayes MD, Assassi S. Global skin gene expression analysis of early diffuse cutaneous systemic sclerosis shows a prominent innate and adaptive inflammatory profile. Ann Rheum Dis 2020; 79:379-386. [PMID: 31767698 PMCID: PMC7386329 DOI: 10.1136/annrheumdis-2019-215894] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Determine global skin transcriptome patterns of early diffuse systemic sclerosis (SSc) and how they differ from later disease. METHODS Skin biopsy RNA from 48 patients in the Prospective Registry for Early Systemic Sclerosis (PRESS) cohort (mean disease duration 1.3 years) and 33 matched healthy controls was examined by next-generation RNA sequencing. Data were analysed for cell type-specific signatures and compared with similarly obtained data from 55 previously biopsied patients in Genetics versus Environment in Scleroderma Outcomes Study cohort with longer disease duration (mean 7.4 years) and their matched controls. Correlations with histological features and clinical course were also evaluated. RESULTS SSc patients in PRESS had a high prevalence of M2 (96%) and M1 (94%) macrophage and CD8 T cell (65%), CD4 T cell (60%) and B cell (69%) signatures. Immunohistochemical staining of immune cell markers correlated with the gene expression-based immune cell signatures. The prevalence of immune cell signatures in early diffuse SSc patients was higher than in patients with longer disease duration. In the multivariable model, adaptive immune cell signatures were significantly associated with shorter disease duration, while fibroblast and macrophage cell type signatures were associated with higher modified Rodnan Skin Score (mRSS). Immune cell signatures also correlated with skin thickness progression rate prior to biopsy, but did not predict subsequent mRSS progression. CONCLUSIONS Skin in early diffuse SSc has prominent innate and adaptive immune cell signatures. As a prominently affected end organ, these signatures reflect the preceding rate of disease progression. These findings could have implications in understanding SSc pathogenesis and clinical trial design.
Collapse
Affiliation(s)
- Brian Skaug
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Dinesh Khanna
- Scleroderma Program, Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - William R Swindell
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, Ohio, USA
| | - Monique E Hinchcliff
- Department of Medicine, Section of Allergy, Rheumatology, and Immunology, Yale University, New Haven, Connecticut, USA
| | - Tracy M Frech
- Division of Rheumatology, Department of Internal Medicine, University of Utah and Salt Lake Regional Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Virginia D Steen
- Division of Rheumatology, Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Faye N Hant
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jessica K Gordon
- Department of Rheumatology, Hospital for Special Surgery, New York City, New York, USA
| | - Ami A Shah
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisha Zhu
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - W Jim Zheng
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jeffrey L Browning
- Department of Microbiology, Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Alexander M S Barron
- Department of Microbiology, Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Minghua Wu
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sudha Visvanathan
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut, USA
| | - Patrick Baum
- Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Jennifer M Franks
- Department of Biomedical Data Science, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Dartmouth College Geisel School of Medicine, Lebanon, New Hampshire, USA
- Department of Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - Victoria K Shanmugam
- Division of Rheumatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robyn T Domsic
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Flavia V Castelino
- Division of Rheumatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elana J Bernstein
- Division of Rheumatology, Vagelos College of Physicians and Surgeons, New York City, New York, USA
| | - Nancy Wareing
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marka A Lyons
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jun Ying
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Julio Charles
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maureen D Mayes
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Division of Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
30
|
Min HK, Moon SJ, Park KS, Kim KJ. Integrated systems analysis of salivary gland transcriptomics reveals key molecular networks in Sjögren's syndrome. Arthritis Res Ther 2019; 21:294. [PMID: 31856901 PMCID: PMC6921432 DOI: 10.1186/s13075-019-2082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background Treatment of patients with Sjögren’s syndrome (SjS) is a clinical challenge with high unmet needs. Gene expression profiling and integrative network-based approaches to complex disease can offer an insight on molecular characteristics in the context of clinical setting. Methods An integrated dataset was created from salivary gland samples of 30 SjS patients. Pathway-driven enrichment profiles made by gene set enrichment analysis were categorized using hierarchical clustering. Differentially expressed genes (DEGs) were subjected to functional network analysis, where the elements of the core subnetwork were used for key driver analysis. Results We identified 310 upregulated DEGs, including nine known genetic risk factors and two potential biomarkers. The core subnetwork was enriched with the processes associated with B cell hyperactivity. Pathway-based subgrouping revealed two clusters with distinct molecular signatures for the relevant pathways and cell subsets. Cluster 2, with low-grade inflammation, showed a better response to rituximab therapy than cluster 1, with high-grade inflammation. Fourteen key driver genes appeared to be essential signaling mediators downstream of the B cell receptor (BCR) signaling pathway and to have a positive relationship with histopathology scores. Conclusion Integrative network-based approaches provide deep insights into the modules and pathways causally related to SjS and allow identification of key targets for disease. Intervention adjusted to the molecular traits of the disease would allow the achievement of better outcomes, and the BCR signaling pathway and its leading players are promising therapeutic targets.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Martinović Kaliterna D, Petrić M. Biomarkers of skin and lung fibrosis in systemic sclerosis. Expert Rev Clin Immunol 2019; 15:1215-1223. [DOI: 10.1080/1744666x.2020.1670062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Marin Petrić
- Department of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital of Split, Split, Croatia
| |
Collapse
|